a2 United States Patent

US009450837B2

10) Patent No.: US 9,450,837 B2

Khemani et al. 45) Date of Patent: Sep. 20, 2016
(54) SYSTEMS AND METHODS FOR (56) References Cited
CONFIGURING POLICY BANK U S. PATENT DOCUMENTS
INVOCATIONS -
. . 5,057,996 A 10/1991 Cutler et al.
(71) Applicant: Citrix Systems, Inc., Fort Lauderdale, 5,187,790 A 2/1993 East et al.
FL (US) (Continued)
(72) Inventors: Prakash Khemani, San Jose, CA (US); FOREIGN PATENT DOCUMENTS
Vishal Bandekar, Bangalore (IN) EP 2 456 125 52012
WO WO0-02/23362 Al 3/2002
(73) Assignee: CITRIX SYSTEMS, INC., Fort (Continued)
Lauderdale, FL (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Australian Examination Report on 2008225150 dated Nov. 14,
patent is extended or adjusted under 35 2011 .
U.S.C. 154(b) by 464 days. (Continued)
(21) Appl. No.: 14/107,386 Primary Examiner — Quang N Nguyen
(74) Attorney, Agent, or Firm — Foley & Lardner LLP;
(22) Filed: Dec. 16, 2013 Christopher J. McKenna
57 ABSTRACT
(65) Prior Publication Data . . .
Systems and methods for configuring and evaluating poli-
US 2014/0108635 Al Apr. 17, 2014 cies that direct processing of one or more data streams are
described. A configuration interface is described for allow-
ing users to specify object oriented policies. These object
I iented policies may allow any data structures to be applied
Related U.S. Application Data ortented p Y 4 . PP
with respect to a payload of a received packet stream,
(63) Continuation of application No. 11/685,180, filed on including any portions of HTTP traffic. A configuration
Mar. 12, 2007, now Pat. No. 8,631,147. interface may also allow the user to control the order in
which policies and policy groups are executed, in addition to
(51) Int. Cl specifying actions to be taken if one or more policies are
G0;$F 1 5/173 (2006.01) undefined. Systems and methods for processing the policies
H04L 124 200 6. 01 may allow efficient processing of object-oriented policies by
(01 applying potentially complex data structures to unstructured
HO4L 29/06 (2006.01) data streams. A device may also interpret and process a
(52) US. CL number of flow control commands and policy group invo-
CPC ... HO4L 41/50 (2013.01); HO4L 63/20 cation statements to determine an order of execution among
(2013.01) a number of policies and policy groups. These policy
(58) Field of Classification Search configurations and processing may allow configuration and
processing of complex network behaviors relating to load
USPC 709/203, 204, 217, 219, 223, 224, 225, balancing, VPNs, SSL offloading, content switching, appli-
709/226, 232, 238; 707/600, 6487;1761/?/5 13, cation security, acceleration, and caching.

See application file for complete search history.

1101

14 Claims, 27 Drawing Sheets

identifying, by an appliance, a first policy group to apply to a

received packet stream

1103

group

processing, by the appliance, a first policy of the first policy
group, the first policy identifying (i) a rule comprising a first
_, expression, and {ii) information identifying a second policy

1105

evaluating, by the appliance, the rule |

1107

N

processing, by the appliance in response to the evaluation of
the rule, the identified second policy group

1109

N

processing, by the appliance after processing the second policy
group, a second policy of the first policy group

US 9,450,837 B2

Page 2
(56) References Cited 6,757,362 Bl 6/2004 Cooper et al.
6,842,906 Bl 1/2005 Bowman-Amuah
U.S. PATENT DOCUMENTS 6,850,252 Bl 2/2005 Hoftberg
6,877,043 B2 4/2005 Mallory et al.
5,204,897 A 4/1993 Wyman 6,882,634 B2 4/2005 Bagchi et al.
5,297,283 A 3/1994 Kelly et al. 6,888,844 B2 522005 Mallory et al.
5,426,637 A 6/1995 Derby et al. 6,891,881 B2 5/2005 Trachewsky et al.
5,729,710 A 3/1998 Magee et al. 6,898,204 B2 5/2005 Trachewsky et al.
5,872,973 A 2/1999 Mitchell et al. 6,904,449 Bl 6/2005 Quinones
5911,051 A 6/1999 Carson et al. 6,907,546 Bl 6/2005 Haswell et al.
6,158,007 A 12/2000 Moreh et al. 6,950,818 B2 9/2005 Dennis et al.
6,169,992 Bl 1/2001 Beall et al. 6,954,736 B2 10/2005 Menninger et al.
6,202,096 Bl 3/2001 Williams et al. 6,954,800 B2 10/2005 Mallory
6,202,157 Bl 3/2001 Brownlie et al. 6,957,186 Bl 10/2005 Guheen et al.
6,289,382 Bl 9/2001 Bowman-Amuah 6,975,655 B2 12/2005 Fischer et al.
6,321,337 Bl 11/2001 Reshef et al. 6,976,090 B2 12/2005 Ben-Shaul et al.
6,332,163 Bl 12/2001 Bowman-Amuah 6,988,236 B2 1/2006 Ptasinski et al.
6,333,931 Bl 12/2001 LaPier et al. 6,993,101 B2 1/2006 Trachewsky et al.
6,339,595 Bl 1/2002 Rekhter et al. 7,000,031 B2 2/2006 Fischer et al.
6,339,832 Bl 1/2002 Bowman-Amuah 7,027,055 B2 4/2006 Anderson et al.
6,412,000 Bl 6/2002 Riddle et al. 7,035,285 B2 4/2006 Holloway et al.
6,427,063 Bl 7/2002 Cook et al. 7,039,606 B2 5/2006 Hoffman et al.
6,427,234 Bl 7/2002 Chambers et al. 7,047,279 Bl 5/2006 Beams et al.
6,434,568 Bl 8/2002 Bowman-Amuah 7,054,837 B2 5/2006 Hoffman et al.
6,434,628 Bl 82002 Bowman-Amuah 7,054,944 B2 5/2006 Tang et al.
6,438,594 Bl 8/2002 Bowman-Amuah 7,069,234 Bl 6/2006 Cornelius et al.
6,442,748 Bl 8/2002 Bowman-Amuah 7,072,807 B2 7/2006 Brown et al.
6,452,915 Bl 9/2002 Jorgensen 7,072,843 B2 7/2006 Menninger et al.
6,463,470 Bl 10/2002 Mohaban et al. 7,082,572 B2 7/2006 Pea et al.
6,466,654 Bl 10/2002 Cooper et al. 7,085,683 B2 8/2006 Anderson et al.
6,473,794 B1 10/2002 Guheen et al. 7,100,195 Bl 82006 Underwood
6,477,580 Bl 11/2002 Bowman-Amuah 7,120,596 B2 10/2006 Hoffiman et al.
6,477,665 Bl 11/2002 Bowman-Amuah 7,136,645 B2 11/2006 Hanson et al.
6,496,850 Bl 12/2002 Bowman-Amuah 7,140,044 B2 11/2006 Redlich et al.
6,502,102 Bl 12/2002 Haswell et al. 7,143,153 Bl 11/2006 Black et al.
6,502,131 Bl 12/2002 Vaid et al. 7,146,644 B2 12/2006 Redlich et al.
6,502,213 Bl 12/2002 Bowman-Amuah 7,149,698 B2 12/2006 Guheen et al.
6,519,571 Bl 2/2003 Guheen et al. 7,152,092 B2 12/2006 Beams et al.
6,523,027 Bl 2/2003 Underwood 7,162,509 B2 1/2007 Brown et al.
6,526,056 Bl 2/2003 Rekhter et al. 7,165,041 Bl 1/2007 Guheen et al.
6,529,909 Bl 3/2003 Bowman-Amuah 7,167,844 Bl 1/2007 Leong_ et al.
6,529,948 Bl 3/2003 Bowman-Amuah 7,171,379 B2 1/2007 Menninger et al.
6,536,037 Bl 3/2003 Guheen et al. 7,191,252 B2 3/2007 Redlich et al.
6,539,396 Bl 3/2003 Bowman-Amuah 7,194,763 B2 3/2007 Potter et al.
6,549,949 Bl 4/2003 Bowman-Amuah 7,200,530 B2 4/2007 Brown et al.
6,550,057 Bl 4/2003 Bowman-Amuah 7,206,805 Bl 4/2007 McLaughlin, Jr.
6,571,282 Bl 5/2003 Bowman-Amuah 7,228,453 B2 6/2007 O’Brien et al.
6,578,068 Bl 6/2003 Bowman-Amuah 7,237,265 B2 6/2007 Reshef et al.
6,584,569 B2 6/2003 Reshef et al. 7,310,721 B2 12/2007 Cohen
6,601,192 Bl 7/2003 Bowman-Amuah 7,318,100 B2 1/2008 D_emmer et al.
6,601,233 Bl 7/2003 Underwood 7,385,924 Bl 6/2008 Riddle
6,601,234 Bl 7/2003 Bowman-Amuah 7,389,462 Bl 6/2008 Wang et al.
6,606,479 B2 8/2003 Cook et al. 7,433,944 B2* 10/2008 Kanada HO041L 41/0213
6,606,660 Bl 82003 Bowman-Amuah 7097217
6,609,128 Bl 8/2003 Underwood 7,522,581 B2 4/2009 Acharya et al.
6,611,822 Bl 8/2003 Beams et al. 7,739,226 B2* 6/2010 Loftusc....... GOGF 17/30448
6,615,166 Bl ~ 9/2003 Guheen et al. 707/600
6,615,199 Bl 9/2003 Bowman-Amuah 7,849,047 B2* 12/2010 Loftuscon... GOGF 17/30657
6,615,253 Bl 9/2003 Bowman-Amuah) 707/600
6,629,081 Bl 9/2003 Cornelius et al. 7,853,678 B2 12/2010 Khemani et al.
6,633,878 Bl 10/2003 Underwood 7,853,679 B2 12/2010 Khemani et al.
6,636,242 B2 10/2003 Bowman-Amuah 7,865,589 B2 1/2011 Khemani et al.
6,640,145 B2 10/2003 Hoffberg et al. 7,870,277 B2* 1/2011 Korrapati HO04L 41/0233
6,640,238 Bl 10/2003 Bowman-Amuah 709/203
6,640,244 Bl 10/2003 Bowman-Amuah 7,917,647 B2* 3/2011 Cooper HO04L 12/2602
6,640,248 Bl 10/2003 Jorgensen 709/225
6,640,249 Bl 10/2003 Bowman-Amuah 7,966,655 B2 6/2011 Acharya et al.
6,657,954 Bl 12/2003 Bird et al. 8,214,434 B2* 7/2012 McColgan GO6N 5/025
6,691,301 B2 2/2004 Bowen 709/204
6,701,514 Bl 3/2004 Haswell et al. 8,346,918 B2* 1/2013 Kay ... HO4L 63/1416
6,704,873 Bl 3/2004 Underwood 709/224
6,715,145 B1 3/2004 Bowman-Amuah 8,862,551 B2* 10/2014 Limccccoovvvenenn GOGF 21/6218
6,718,380 Bl 4/2004 Mohaban et al. 707/648
6,718,535 Bl 4/2004 Underwood 8,875,218 B2* 10/2014 Limccccoovvvene. GOGF 21/6218
6,721,286 Bl 4/2004 Williams et al. 713/153
6,721,713 Bl 4/2004 Guheen et al. 2002/0010855 Al 1/2002 Reshef et al.
6,725,367 B2* 4/2004 Morrison GO6F 9/44505 2002/0016851 Al 2/2002 Border
713/1 2002/0034173 Al 3/2002 Border et al.
6,742,015 Bl 5/2004 Bowman-Amuah 2002/0098840 Al 7/2002 Hanson et al.

US 9,450,837 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2002/0105942 Al
2002/0105972 Al
2002/0106005 Al
2002/0150048 Al
2003/0014442 Al
2003/0067874 Al
2003/0074436 Al
2003/0084165 Al
2003/0110192 Al
2003/0115204 Al
2003/0223361 Al
2003/0233581 Al
2003/0236887 Al
2004/0039827 Al
2004/0073512 Al
2004/0073701 Al
2004/0107360 Al
2004/0117409 Al
2004/0210320 Al
2005/0004887 Al
2005/0015624 Al
2005/0021723 Al
2005/0044089 Al
2005/0044108 Al
2005/0050053 Al
2005/0063083 Al
2005/0071650 Al
2005/0091655 Al
2005/0177869 Al
2006/0026682 Al
2006/0095689 Al
2006/0117169 Al
2006/0221990 Al
2006/0294219 Al
2007/0002769 Al
2007/0016597 Al
2007/0067366 Al
2007/0094597 Al
2007/0157287 Al
2007/0169179 Al
2007/0179955 Al
2007/0268516 Al
2007/0280232 Al
2007/0283005 Al
2007/0297378 Al
2007/0300185 Al
2008/0034413 Al
2008/0034425 Al
2008/0046616 Al
2008/0049786 Al
2008/0101222 Al
2008/0225720 Al
2008/0225748 Al
2008/0225753 Al
2008/0229381 Al
2008/0320151 Al
2009/0067874 Al

8/2002 Ahmadi et al.
8/2002 Richter et al.
8/2002 Motiwala et al.
10/2002 Ha et al.
1/2003 Shiigi et al.
4/2003 See et al.
4/2003 Gieseke
5/2003 Kjellberg et al.
6/2003 Valente et al.
6/2003 Greenblatt et al.
12/2003 Hussain et al.
12/2003 Reshef et al.
12/2003 Kesselman et al.
2/2004 Thomas et al.
4/2004 Maung
4/2004 Huang et al.
6/2004 Herrmann et al.
6/2004 Scahill et al.
10/2004 Pandya
1/2005 Igakura et al.
1/2005 Ginter et al.
1/2005 Saperia
2/2005 Wau et al.
2/2005 Shah et al.
3/2005 Thompson
3/2005 Dart et al.
3/2005 Jo et al.
4/2005 Probert et al.
8/2005 Savage et al.
2/2006 Zakas
5/2006 Peinado et al.
6/2006 Peinado et al.
10/2006 Muller et al.
12/2006 Ogawa et al.
1/2007 Matityahu et al.
1/2007 Beadles et al.
3/2007 Landis
4/2007 Rostom
7/2007 Lim
7/2007 Narad
8/2007 Croft et al.
11/2007 Bugwadia et al.
12/2007 Dec et al.
12/2007 Beliles et al.
12/2007 Poyhonen et al.
12/2007 Macbeth et al.
2/2008 He et al.
2/2008 Overcash et al.
2/2008 Verzunov et al.
2/2008 Ram et al.
5/2008 Christenson
9/2008 Khemani et al.
9/2008 Khemani et al.
9/2008 Khemani et al.
9/2008 Sikka et al.
12/2008 McCanne et al.
3/2009 Hoshio

FOREIGN PATENT DOCUMENTS

WO WO0-02/39260 A2 5/2002
WO WO-2004/114529 A2 12/2004
WO WO-2005/024550 A2 3/2005
WO WO-2005/024665 Al 3/2005
WO WO-2005/029313 Al 3/2005
WO WO-2005/029363 Al 3/2005
WO WO-2007/024647 A2 3/2007

OTHER PUBLICATIONS

Chinese Office Action for Application No. 200880015862 .4 dated
Sep. 12, 2012.

Chinese Office Action on 200880015862 .4 dated Nov. 24, 2011.
European Communication & Search Report for Application No.
12153690.8 dated Apr. 19, 2012.

European Examination Report for Application No. 08732008.1
dated Mar. 1, 2011.

European Examination Report for Application No. 08732008.1
dated Apr. 18, 2012.

European Examination Report for Patent Application No.
08732008.1 dated Feb. 1, 2010 (5 pages).

Frahim, J. & Santos, O., Cisco ASA: All-in-One Firewall, IPS, and
VPN Adaptive Security Appliance, Cisco Press. (2005).
International Search Report for PCT/US2008/056671, mailed Jan.
26, 2009, (5 pages).

Moore, B., et al. IBM Policy Core Information Model—Version 1
Specification, RFC3060, Cisco Systems, Feb. 2001.

US Notice of Allowance for U.S. Appl. No. 11/685,147 dated Sep.
9, 2010.

US Notice of Allowance for U.S. Appl. No. 11/685,167 dated Sep.
7, 2010.

US Office Action for U.S. Appl. No. 11/685,177 dated Apr. 18,
2012.

EP Office Action for Application No. 12153690.8 dated May 22,
2013.

US Office Action for U.S. Appl. No. 11/685,177 dated Oct. 20, 2011.
US Office Action for U.S. Appl. No. 11/685,177 dated Nov. 30,
2010.

US Office Action for U.S. Appl. No. 11/685,177 dated Mar. 11,
2011.

US Office Action for U.S. Appl. No. 11/685,177 dated Jul. 7, 2011.
US Office Action for U.S. Appl. No. 11/685,180 dated Oct. 12, 2011.
US Office Action for U.S. Appl. No. 11/685,180 dated Apr. 20, 2011.
US Office Action for U.S. Appl. No. 12/576,523 dated Oct. 3, 2011.
CN Office Action for Application No. 200880015862 .4 dated Mar.
25, 2013.

US Office Action for U.S. Appl. No. 11/685,147, dated Jun. 11, 2010
(6 pages).

US Office Action for U.S. Appl. No. 11/685,175, dated Jun. 14, 2010
(6 pages).

US Office Action for U.S. Appl. No. 11/685,180 dated Mar. 3, 2010.
US Office Action for U.S. Appl. No. 11/685,177; dated May 26,
2010 (18 pages).

US Office Action for U.S. Appl. No. 11/685,177 dated Dec. 1, 2009,
(12 pages).

US Office Action for U.S. Appl. No. 11/685,171, dated Dec. 15,
2009 (9 pages).

US Office Action, dated Dec. 15, 2009, in U.S. Appl. No.
11/685,175, 9 pages.

US Office Action, dated Dec. 17, 2009, in U.S. Appl. No.
11/685,147, 9 pages.

US Office Action for U.S. Appl. No. 11/685,167 dated May 18,
2010.

US Office Action for U.S. Appl. No. 11/685,180 dated Sep. 4, 2009.
US Office Action for U.S. Appl. No. 11/685,167 dated Jun. 12, 2009.
US Notice of Allowance for U.S. Appl. No. 11/685,177 dated Mar.
19, 2013.

US Notice of Allowance for U.S. Appl. No. 12/765,523 dated Aug.
29, 2012.

US Office Action for U.S. Appl. No. 11/685,177 dated Jul. 31, 2012.
US Office Action for U.S. Appl. No. 12/576,523 dated Mar. 19,
2012.

Written Opinion of the International Searching Authority, PCT/
US2008/056671, dated Jan. 26, 2009, 15 pages.

Zhu Jiang, etc. “Policy-based network management technology and
applications thereof.” Communication World.

US Office Action for U.S. Appl. No. 13/935,320 dated Nov. 20,
2014.

US Notice of Allowance on U.S. Appl. No. 13/935,320 DTD Jun.
8, 2015.

US Office Action on U.S. Appl. No. 13/935,320 DTD Mar. 25, 2015.

* cited by examiner

US 9,450,837 B2

Sheet 1 of 27

Sep. 20, 2016

U.S. Patent

ugoL

JEVSET

o O

qoQlL leAalag

P y
y 0L

someN

Vi 9Old uzolL jusNd

asuelddy

002 PHOMISN

ezolL ualo

=

US 9,450,837 B2

Sheet 2 of 27

Sep. 20, 2016

U.S. Patent

ugpl Jemieg

o O

q901 JerseS

aoueljddy

g1 'Old

Y YIomaN

L2l

uzoL usnd

qcol 8o

BZ0L 3ualo

=

US 9,450,837 B2

Sheet 3 of 27

Sep. 20, 2016

U.S. Patent

ugoL

JEYNETS

(&

(=

q90l Jenles

€90l

lanlag

<

-
)

J1 "Old

(ao1A0p
uoneziwndo

NVYM
asouelddy

Lefe

uzokL ualo

(oo1A0p
uoneziwndo

NVYM
asouelddy

qzol jualo

ezoL Lo

=

US 9,450,837 B2

Sheet 4 of 27

Sep. 20, 2016

U.S. Patent

ai 'oid

V90l J9AISS
36| 99IMIBS
Buuojuow
901 J9MI8S souewopsd
61
Jusbe Buliojiuow
aouewouad
61 aouelddy
sulbug Aoljod FolL v 141]1
— YIOMION H | — MI0MISN
061 walsAg 002
ISEYETel
uoneslddy
8|l} eyeq
uoneslddy

201 uelo

021 Wby welD

3|l eleq

uoneolddy

[JUSWUOJIAUT
Bunndwon

US 9,450,837 B2

Sheet 5 of 27

Sep. 20, 2016

U.S. Patent

1 9OIld
90IAD
@c_u_\c_ﬁm_ pJeoghey
m:J @hh) u-epz) Nwhk / \ F@Nv
aoBLIg)U| 90IAe(i/ LD
IOM}BN uone|[elsuy| (s)eoinep oll
fe(dsiqg //
&l
>
%T\
[abeio)g) Aowsy
H jueby)
0zs—"| sl NNN.L 101
91emyjos
SO
T

mwhw(\

ﬁce

US 9,450,837 B2

Sheet 6 of 27

Sep. 20, 2016

U.S. Patent

41 "Old

201A(J
O/1

<
0§ h\

201A(J

0lL— agpug

O/1

uod (Mod
KI0WIN | O/1

110
0/1

10SS3001]
urejy

US 9,450,837 B2

Sheet 7 of 27

Sep. 20, 2016

U.S. Patent

vZ 'Ol -
— — — — . 09¢ |
99¢ siiod 14°14 C9C [A* A “ “ —_
10M)3 fowad 10SS99 | 1059901d - 90z
YJIOMION N 0id || 40SS®30.d | | opdAioug m
5 _,------.\a 4 atempiey
192 oels \
YIOM}SN
z yee auibug
Y uondAioug
€z Joynq Tve Jowny
0vZ auibug 19)oed pajeibajul
L-T 19ke paads-ybiH 0cz yoz
— - [ouloy| aoedg
ﬂ ﬂ mNﬂN |[oUIDy
Jabeue
uoissasdwon oulbuy e - W
K110 Y2€J
jooojoud-13 N llod
—
S92IAI8G Uowaeq waysAg 6%
— —_— p— p— d
912 sweiboug viZ ¥ 012 ohwwzw
S92IMIDS |I9YS [bo) N9

Burioyuol yjjesH

US 9,450,837 B2

Sheet 8 of 27

Sep. 20, 2016

U.S. Patent

U90} JIoAI0S

uQL¢ 99IneS

q90L JoAIeS

d0.¢ 9dIneg

€90} Jon8g

B0/ SOINBS

y 0L
YIOMION

a¢ 'Old

00C oouelddy

61
juabe Buuoyuow

062 M4 ddy

33¢ UoleIs|9ady

98¢ SNd

8¢ bulyoums

€8¢ dl Isuequ]

08¢ NdA 1SS

UGz v JOAIBSA

BG/Z VY JOAIOGA

uzol uLld

uoziL
waby jusi D

qcol uslD

NIOMION

q0zL
weby uslD

BZ0L Ul

2021
weby alD

US 9,450,837 B2

Sheet 9 of 27

Sep. 20, 2016

U.S. Patent

€ 'Old

TOE Spont sy

Haeig
SACGAMIBN

_1---I-I---I-I--I-III--!II----i-i---I-!-I--I!Ii!
1
|
1
| R
! q01€
1
1
i
i ™
! 221 Wby s
]
1
1
i
| ZiE uely unnsis|sony
! 2 f
]
|
1
]
1
1
!
e
== i
| #0g By vopsyo |
7 < Gl ans _
_ 50 sedeniang _

M

US 9,450,837 B2

Sheet 10 of 27

Sep. 20, 2016

U.S. Patent

unoo Jui
(1x91)8nieAI9b 1x9)
(yur)onfeplob ixo)
(ru)sieNob 1xo)

(3STT 2u
JO sselodns)
Kionb

\4a

T4 4

Old

()PITRAST URSTOOq
XTIINg1ob 31x97]

///// ()yaegist 38TT
()Azenpasb ISTT AU

() owru3soglob awrulsoy

(3x23 JO sseroqng) Tan

0zy

() Apog3eb 3x23

() bsw snje3s x93 \J

()snieas qur oLy

S8UOdsasx daay

uUnNoo UT
(3ur)eniealsb 3xa3
(3UT)oweN3®b 3x3273

() mau

(3STT AU JO SS8eTOqNs) IT00D

ocy

IOAIOS 1X97]
jxod uwnu
urewop 1x973

SwWeualsoq

\

() Apogaeb 3xo7 \J/

IIIIIIIIIII In39b Tan
()T T cob

3bus T - 3U83U0D
()o1300)386 2I00D
\%ﬂMFmDumomumm oweulsoYy

\\\ EEENIEP N REkl]

Sy

2N

\\Imov

(dxebax)yogew ucrssoidxs bax

(burigjs) sTenbo
(bUTI3S) YITMSPUD
(burxgs)ygtmsaaels
(bUTIZS) SUTPIUOD

ueT200q

()yabuar 3ur

ueaT00q
urPaTOOq
siz=hgeloled
uraToOq

%53

US 9,450,837 B2

Sheet 11 of 27

Sep. 20, 2016

U.S. Patent

*

’

“E0 aMT JIMIE THLIASLINY

L5 fdINg ‘dIdg Eaol LEEL 138 CLDHTIES XHOME HOLYH XIDTd I Judd

HIAFTES ‘HAVES MMYH CHLIOMET ‘IAVE Td40 JLIE ‘34AVE HIAAVIE JLLH ‘IIVES

‘Tl THLIMSINE

FENTTLIEOD TANY SMITLMOD ‘IFVIHOD ‘HITNLIA WHLS Zdoddd ‘HEoEd Jdoddd

A% 'EASTY HELIY

T prnd Seels Moy PaILISANI SpapISTAL

T A9l Jo uauedilod atmeuag atj] W Juasald XIgns aumeaarg ay] uo jxa T, 58 aesads
() ETEANS

T 29 Jo watuediaes A1anh oy uo (29 P = SIANIap [187] aneA -aue] B 58 agemads

() XaEnd

3RER{AN
QORISR

“TAN A wuasard [ooojord ayy uo a7, oe aperads
[13a0nLo8d

T AASY qoEIqEdE

T 9 Jo muatnedmeaen gred agg we q8r] pajeidas ;e se apradn
BRI

It
»
|1
]
4
P
5]
o
]
o
3

SUIETRES ATl gOﬁO.W..HE(ID. Iyl o COEOQ SYJ U JHAT, 5B Muﬁhuﬂo

(1200 SN BALRA

Ter] AU W Tasasd AU ot Al Bo auneh] 150 JLLH Se andado

Z2B3E1D IIF

BN S YT i Y

aoRIREqe

UoREI0ULIE [

(13 TAD €339

k. 7

0Svy

\&N \\\\\\\\\\\\\WN\\\W {

disH 500l slewHosg AdogEl meln 1p3 eld

..

e s

oo 2

US 9,450,837 B2

Sheet 12 of 27

Sep. 20, 2016

U.S. Patent

J¥ Old

(40) Jojeledo

(

(., W02°004,)03 "IAYIAS ANYNLSOHOIL dLLIH || (,00L)HLIMSLEVIS HIVd TdN'O3IE dLIH >/

2007

(1s1] paliWIEp BLIWIOD Sk 1Xa) S}eall)
1seoadAy poldxe

ﬂ

(.U8,)SNIVINOD'(.,)1SIT OL LSVOadAL (.e6enbuet-1deocoy,)y3avyaH OIY dL1H J

q00¥

(.30r,)SNIVLNOD (.PL)INTVA AYIND TIN'OIHE A LLH \/

E00%

Baquisw] felqo] —

00v

US 9,450,837 B2

Sheet 13 of 27

Sep. 20, 2016

U.S. Patent

g 'Old

GG Uuoioe

N

[[Z 1enu8s 0} 3s8nbau paemuoy]] usyy (. 30r, =

\ " Co_www.axw /

= (,PL)INTVA'AYINO THN'OIH ' dL1H)

) x

00s Aoljod

US 9,450,837 B2

Sheet 14 of 27

Sep. 20, 2016

U.S. Patent

9 'Old

T 243 Jo uauodwod Alanb

.;

mo\

N\

] = uosswdxappy

.

029

s

US 9,450,837 B2

Sheet 15 of 27

Sep. 20, 2016

U.S. Patent

V. 9ld

\\\\\\\m\\\\\\m\“ Z \\\\(\\\\\\\\\\\\\W\\\ Z

0LL

US 9,450,837 B2

Sheet 16 of 27

Sep. 20, 2016

U.S. Patent

aouelddy
Imm—
00c

4. 'Old

col

A\
\
N\

00
uaalJos 1ndul

uoissaldxa

00.

ERLINE V]
uonelnbyuoo

US 9,450,837 B2

Sheet 17 of 27

Sep. 20, 2016

U.S. Patent

V8 'Old

uo|

Issaidxa 8y} JO UoljenjeAs ue Uo

paseq usye) aq 0) uoloe ay) ‘Aoljod sy Joj uoioe ue BulAmuspl
uoljew.ojul ‘eoeisiul uonelnBbiyuod ay) elA Jasn ‘Bulnles)

4

A

sse|o J08lqo ayj Jo

Jaquwiaw e (1) pue ‘wesJ)s Joxoed e Jo peojhed ayj jo uolod e
0] Aldde o) ssejo 109[qo ue (1) BulAuspl uoissaidxs ay; ‘Aoljod
8} Jo} uoissaidxs ue ‘soepsjul uoelnBbiyuod sy} eia ‘Buiaisosl

4

A

801ASp YJoMIaU

e JoJ Aoljod e Buninbiyuos 1o} soepsiul uonelnbyuos e Buipiroid

G083

/

€08

/

108

US 9,450,837 B2

Sheet 18 of 27

Sep. 20, 2016

U.S. Patent

a8 'Old

Aoljod
sy} Aq palyoads uonoe ue ‘uolien|eas sy} 0} asuodsal Ul ‘Buiye)

A

sanjeA paubisse ay} Uo paseq
uolssaidxs ay) Jo uonenjeas ue ‘eoueldde ay) Aq ‘Builiopiad

A

peojAed
8y} Jo uoiliod e uo paseq uoissaidxs pajuslio-109lqo sy Aq
pauoads ainjons elep e 0} sanjea ‘ooueldde sy Aq ‘Buiubisse

wesJ)s joxoed psisoal
e Jo peojAed e 0} J0adsal y)m sjenjeas 0} uoissaldxs pajusiio
-108[qo ue Buisudwoo Aoijod e ‘eoueldde ue Aq ‘BuiAjnuspl

/

128

/

Gz8

/

£¢8

/

128

US 9,450,837 B2

Sheet 19 of 27

Sep. 20, 2016

U.S. Patent

J8 Old

weaJ]s 19y0ed pais)e ay) ‘eoueldde ayj Aq ‘Buipiwisuel

A

weaJjs }9xoed
paAleoal 8y} Jo uoilod e ‘uoenjeas sy} o) ssuodsal ul ‘Buuisye

A

sanjeA paubisse ay) Uo paseq
uolssaidxs sy Jo uonenjeas ue ‘eoueldde sy Aq ‘Buiwioped

A

peojAed
8y} Jo uolod e uo paseq uolssaidxs pajusiio-}9alqo sy} Ag
pauoads ainjony)s ejep e o) sanjea ‘soueldde sy Aq ‘Buiubisse

weal)s Joxoed paniadal
e Jo peojAed e 0] }0adsal Yylm ajen|eas o} uoissaldxa pajuslio
-109[qo ue Buisudwoo Aoljod e ‘eouendde ue Ag ‘Buifuspl

/

618

/

Lv8

/

G6z8

/

£e8

/

128

US 9,450,837 B2

Sheet 20 of 27

Sep. 20, 2016

U.S. Patent

6 'Old

uoljoe puooss

8y ‘uoneulwls)ep ay) o) ssuodsal ul soueldde sy Aq ‘Buiye)

4

A

peojAed sy) 0] 10adsal yyim paulgspun
s1 Aoljod sy Jo Juswa|a ue ‘soueldde ay) Ag ‘Buluiwisiep

4

A

pauljapun si

Aoljod ayj Jo JUBWISIS UE JI USYE)

8¢ 0} Uoljoe Puodss e (ll) pue uoissaidxs sy} Jo uolenjers

ue uo paseq usxe} aq 0} uoljoe sl e (1) ‘uoissaidxs ue

(1) BuiAoads Aoljod ay) ‘weauys 19x0ed panlsoal e Jo peojhed e
0] J10adsal yum ajenjens o] Aoljod e ‘aeoueldde ue Aq ‘BulAjnuspl

/

G06

/

€06

106

US 9,450,837 B2

Sheet 21 of 27

Sep. 20, 2016

U.S. Patent

VOl "OIld

aNH= u_uﬂoo IDATISS O] QUM._HSMU_ usyjl AOSHMV JT TZ
aNH= N_HMOO IDATISS O] QUM._HSMU_ usyjl AOSHMV JT oc
aNH= N_HNOO IDATISS O] QUM._HSMU_ usyjl AOSHMV JT 6T
aNH= N_HHOO IDATISS O] QUM._HSMU_ usyjl AOSHMV JT 8T
_ aNH= N_HOOO IDATISS O] QUM._HSMU_ usyjl AOSHMV JT LT
(DHQ) YHDALNI ILSYDHAAL" (,WNUAISS,) YHALAV ONIVLS AYIND TIN"OHY "dLIH + LT OLOD ‘guorjzoe usyjl (snil) IJT ST
IXAN ‘pUOT30®P USY1 (00T << pUOIsSsszdxs) IT ST
aNda ‘fuor3or usyl ((,ZOO0J.)SUTRPlUOD cUOISsaIdxs) IT ZT
IXAN ‘guorjor usyl ((,Ied,)SUTRP]lUoD cUuoIssaIdxs) IT TT
ST OLOD !UoTioeP-OU U=yl (fUOIssaidxs =] ZguoIsssidxs) IT 0T
\ ILXAN ‘Tuorjoe usyl (,00F,. == UOIssazdxs) IT g
\
20404)
POLOL qoiol 20001
e0Lol I d ueq Aojjod

US 9,450,837 B2

Sheet 22 of 27

Sep. 20, 2016

U.S. Patent

a0l '©Old

Koljod puooas paljuapi ay)
‘uoljeullis)ap ay) 0] ssuodsal ul soueldde ay) Ag ‘Buissaeosold

A

anJ) 0] sajenjeas a|nJ sy} ‘uolssaldxs
8y Jo uoenjeAs Ue Uo paseq soueldde syl Ag ‘BuluiwIB)Ep

A

saloljod Jo Ayjelnid syy

Jo Aoljod puooss e BuiAuspl uoissaidxs ue () pue ‘sjni ayj Jo
uoljen|eAs Ue UO paseq uaye)} ag 0} uonoe }sii e (1) uoissaldxa
18411 e Buisidwos ajny e (1) BulAuspl Aoljod isa1 ay) ‘saloljod
Jo Aljeanid ayj Jo Aoljod 1841 e ‘eouelidde ayj Aq ‘Buissasoid

A

Jaimuspi Aoljod e Buisudwoo saioljod
1o Ajreanid sy} jo Aoijod auo jses) e ‘wealls }oxoed panladal
e 0] A|dde o) saioljod jo Ayjelnd e ‘eoueldde ue Aq ‘BuiAmuspl

/

2001

/

G0ool

€001

1001

US 9,450,837 B2

Sheet 23 of 27

Sep. 20, 2016

U.S. Patent

VilI '©Old

A A
IXHAN !{guoT3oe usyil (goTni) IFT o€
IXAN ‘puorizor usyl (00 << pUOTssaidxs) IT ST
IXAN {fuorzor usyi (,Z003F,)SUTeluod- guorssardxs) IT zZT
aNg {puorzor usyj (,20[,)suTejuod-guorssordxe) IFT IT
ZT OLOD ‘uoIjoe-ou usyl (uorssexdxs =i uorsseazdxs) JT 0T
IXEN ‘eTuUoTr3oe usyl (orni) 3IT g

J

A

20001
£d yueq Aayjod
A
aNg ‘{puorgor usall (00Z << pUOTSsaIdxs) IT ST
aNdE ‘fuorzor usyl (,ZO0J,.)SUTRlUCD gUOTSsaIdxe) IT zZT
IXAN £d yueq AoTtTod =jOoAUT usyl (,Ied,)SUTeljuod cuorssezdxs) JT TT
GT OLOD !UOT3DP-OU USY] (fUOTISsaIdxs =| guorssaxdxs) IT 0T
ILXAN ‘Tuor3oe usy3l (,00F, == uUorssaxdxsa) IJT S
q0001 L
0LLl Zd Mueq Aoljod

US 9,450,837 B2

Sheet 24 of 27

Sep. 20, 2016

U.S. Patent

aill 'Old

dnoub Aoljod 3s414 8y Jo Aoljod puooss e ‘dnoub
Aoljod puooss sy Buissenoud usye soueldde syy Aq ‘Buisssooid

A

dnoib Aoljod puooas painuspl ayj ‘sjnJ sy

Jo uonen|eas sy 0) asuodsal

ul soueldde ay) Aq ‘Buissasoid

A

S IUE]

y; ‘eoueldde sy Ag ‘Bunenjens

Aoljod puooas e BuiAjjuspl

dnoib
uonew.Jojui (1) pue ‘uoissaldxs

1541} e Buisudwoo ajnd e (1) BuiAuspl Aoljod 1s41y ay) ‘dnoab
Aoljod 18411 Y3 Jo Aoljod 1541 e ‘eoueldde ayy Aq ‘Buisseooad

A

weal)s 19y0ed paaladal

e 0] Aidde o) dnoib Koljod 1841 € ‘eoueldde ue Ag ‘Buikjuapl

/

6011

/

1011

)

SOL1

€011

L0L1

US 9,450,837 B2

Sheet 25 of 27

Sep. 20, 2016

osel

(i~~~ HLIMSLHVYLS HLVYd TdN'0O3d dLLH
810npoId/Woo ZAX mawwn/:diy

el o L e B

Ry i et Ha
E e e A0 A

S T

,,ﬁm@v@wij&

BT el

A E

oLel

LogEi) 10y
Buzmdpiag ayz 5500

R TS V.,A

e \‘.....\‘.
. i

777

G]

AL BRI
i s e

e OE

U.S. Patent

. \. \:
i
e o s e % Z 32438

s

% Spae S S e

US 9,450,837 B2

Sheet 26 of 27

Sep. 20, 2016

U.S. Patent

Vel "Old

ue uo paseq passaooid

8|nJ 8y} Jo uonen|ens
aq 0} a|yoid Ajunoss uoneoidde

ay) BuiAjuspl uonewlolul ‘aoepsIul 3y eIA ‘Bulnleosl

4

A

uolssaldxs 1s.i) e Buisudwoo sjn. e BulAjioads

Aoljod sy ‘Aoljod e ‘eoepsiul

uoneinbiyuos syy Aq ‘BuiAuspl

4

A

aljoid Ajinoas uoneoldde ayy

1 03082 puooss e 0] Buipuodsaliod BulAjioads Bumes puooss
sy} ‘Bumss puooss e ‘eoeusiul uoneinbiyuod ay) eia ‘Bulaiedal

4

A

alijoid Anoss uonesidde

ay) Jo 3oayo 1s.1) e 0) Buipuodsaliod BulAoads Bumes
sy} ‘Bumss 1811} e ‘eoepsjuUl UoeInbiuod sy} elA ‘Bulalsosl

4

A

a|yoid Aunoss

uoneoldde ue BulnByuoo Joy soepsUl UoleInByuoo e Bulpircid

US 9,450,837 B2

Sheet 27 of 27

Sep. 20, 2016

U.S. Patent

dc€l Old

a|joud

Aunoas uonesldde ay) Ag paiioads 3}28Yd puodss e ‘ajnl ay)
JO uonenjeas ay} o) ssuodsal ul soueldde sy Aq ‘Buisssooid

A

A

a|joud

Ajnoas uoneoldde ayy Aq paiyioads ¥29yo sl € ‘ajni ay)
JO ucnenjeas sy} 0} asuodsal ul soueldde sy Aq ‘Buisseooid

4

A

a|nJ sy ‘souendde ayy Aq ‘Bunenjeas

A

A

aljoid Aunoss uoneondde ue BulAnuspl pue uoissaidxs sl
e Buisudwoo ajni e BuiApoads Aoljod 1s111 8Y) ‘weals 19xoed
panisoal e 0] A|dde 0] Aoljod 1541 e ‘soueldde ue Aq ‘BulAjnuapl

)

yxad’

)

Gervl

)

e€crl

/

Levl

US 9,450,837 B2

1
SYSTEMS AND METHODS FOR
CONFIGURING POLICY BANK
INVOCATIONS

RELATED APPLICATION

The present application claims priority to and is a con-
tinuation of U.S. Non-provisional application Ser. No.
11/685,180 entitled “Systems and Methods For Configuring
Policy Bank Invocations™ and filed on Mar. 12, 2007, which
is incorporated herein by reference in its entirety for all
purposes.

FIELD OF THE INVENTION

The present invention relates to computer networking
technologies. Specifically, the present invention relates to
systems and methods for configuring and applying policies
and settings in network devices.

BACKGROUND OF THE INVENTION

Network devices and clients may provide a number of
complex functions with respect to network traffic. Among
other functions, network devices may provide load balanc-
ing, application security, content switching, SSL offloading,
acceleration, and caching. However, as the number and
complexity of the functions provided by network devices
grows, the complexity and amount of configuration required
for a network device may similarly increase. Further,
improper or suboptimal configuration of a network device
may result in decreased performance, network errors, appli-
cation incompatibility, and weakened security.

Many network devices may utilize a policy framework to
control network device functions. In these frameworks, a
policy may specify a rule and an action which dictates a
behavior under certain conditions. For example, with HTTP
traffic, a policy framework may allow a user to configure
device behavior based on content within the HTTP stream.
These policies may become complex depending on the
content to be analyzed and the behaviors sought. Thus, there
exists a need for a policy framework which allows a user to
apply structure to network traffic for the purpose of writing
policies to direct device behavior. There similarly exists a
need for a network device which can then implement such
structured policy expressions in an efficient manner.

In addition, as the number and complexity of network
device functions grow, the number of policies required for
their configuration may also grow. With an increase in the
number of policies, there also exists a need for specitying
and implementing processing orders among policies and
groups of policies.

Further, some desirable policies used in network devices
may not always have defined results. For example, a policy
may specify behavior in response to a given field of an
HTTP request, but may be undefined in cases where the field
is not present or the field has an unexpected value. While it
may be possible in some cases to write policies that are
always defined, this may require additional policies or more
complex policies and may increase administrative overhead.
Thus, there exists a need for configuration systems which
allow a user to specify one or more actions for the case in
which a policy is undefined.

BRIEF SUMMARY OF THE INVENTION

The present invention is directed towards systems and
methods for configuring and evaluating policies that direct

10

15

20

25

30

35

40

45

50

55

60

65

2

processing of one or more data streams. A configuration
interface is described for allowing users to specify object
oriented policies. These object oriented policies may allow
any data structures to be applied with respect to a payload of
a received packet stream, including any portions of HTTP
traffic. A configuration interface may also allow the user to
control the order in which policies and policy groups are
executed, in addition to specifying actions to be taken if one
or more policies are undefined. Systems and methods for
processing the policies may allow efficient processing of
object-oriented policies by applying potentially complex
data structures to unstructured data streams. A device may
also interpret and process a number of flow control com-
mands and policy group invocation statements to determine
an order of execution among a number of policies and policy
groups. These policy configurations and processing may
allow a user to efficiently configure complex network behav-
iors relating to load balancing, VPNs, SSL offloading, con-
tent switching, application security, acceleration, and cach-
ing.

In one aspect, the present invention relates to systems and
methods of configuring a policy of a network device with an
object-oriented expression to specify structure in a payload
of a packet stream received by a network device In one
embodiment, the method comprises: providing a configura-
tion interface for configuring a policy for a network device;
receiving, via the configuration interface, an expression for
the policy, the expression identifying (i) an object class to
apply to a portion of the payload of a packet stream, and (ii)
a member of the object class; and receiving, via the con-
figuration interface, information identifying an action for the
policy, the action to be taken based on an evaluation of the
expression.

In a second aspect, the present invention relates to sys-
tems and methods for applying object-oriented expressions
in a policy to specify structure in a payload of a packet
stream received by the appliance. In one embodiment, a
method comprises: identifying, by an appliance, a policy to
evaluate with respect to a payload of a received packet
stream, the policy specifying (i) an object class to apply to
a portion of the payload of a packet stream, (ii) a member of
the object class and (iii) an action; selecting, by the appli-
ance, a portion of the payload identified by the object class;
determining, by the appliance, a value for the member of the
object class; and taking, in response to the determined value,
the action. In another embodiment, a method comprises:
identifying, by an appliance, a policy comprising an object-
oriented expression to evaluate with respect to a payload of
a received packet stream; assigning, by the appliance, values
to a data structure specified by the object-oriented expres-
sion based on a portion of the payload; performing, by the
appliance, an evaluation of the expression based on the
assigned values; and taking, in response to the evaluation, an
action specified by the policy. Corresponding systems may
include a packet processor for receiving packet streams and
a policy engine for evaluating one or more object-oriented
policies and taking associated actions.

In a third aspect, the present invention relates to systems
and methods for applying object-oriented expressions in a
policy to specify structure in a payload of a packet stream
received by the appliance. In one embodiment, a method
comprises: identifying, by an appliance, a policy comprising
an object-oriented expression to evaluate with respect to a
payload of a received packet stream; assigning, by the
appliance, values to a data structure specified by the object-
oriented expression based on a portion of the payload;
performing, by the appliance, an evaluation of the expres-

US 9,450,837 B2

3

sion based on the assigned values; altering, in response to
the evaluation, a portion of the received packet stream; and
transmitting, by the appliance, the altered packet stream.
Corresponding systems may include a packet processor for
receiving and forwarding the packet stream and a policy
engine for evaluating one or more object-oriented policies
and taking associated actions.

In a fourth aspect the present invention relates to systems
and methods for configuring and/or processing a policy used
by a network device by specifying an action to be taken in
the event an element of the policy is undefined. In one
embodiment, a method comprises: providing a configuration
interface for configuring a policy of a network device;
identifying, by the configuration interface, a policy com-
prising a first action to be taken based on an evaluation of an
expression; receiving, via the configuration interface, infor-
mation identifying a second action for the policy, the second
action to be taken if an element of the policy is undefined.
In another embodiment, a method of applying a policy
specifying an action to be taken in the event an element of
the policy is undefined comprises: identifying, by an appli-
ance, a policy to evaluate with respect to a payload of a
received packet stream, the policy specifying (i) an expres-
sion, (ii) a first action to be taken based on an evaluation of
the expression and (iii) a second action to be taken if an
element of the policy is undefined; determining, by the
appliance, an element of the policy is undefined with respect
to the payload; and taking, by the appliance in response to
the determination, the second action. Corresponding sys-
tems may include a packet processor for receiving a packet
stream, and a policy engine for evaluating one or more
policies and taking associated actions.

In a fifth aspect, the present invention relates to systems
and methods for configuring and/or processing flow control
among policies used in processing a packet stream. In one
embodiment, a method comprises: providing a configuration
interface for configuring a plurality of policies of a network
device, at least one policy of the plurality of policies
comprising a policy identifier; and receiving, via the con-
figuration interface, information identifying a first policy of
the plurality of policies, the first policy identifying (i) a rule
comprising a first expression and (ii) a first action to be taken
based on an evaluation of the rule; and receiving, via the
configuration interface, information identifying a second
policy of the plurality of policies to apply subsequent to the
first policy if the rule evaluates to true. In another embodi-
ment, a method includes: identifying, by an appliance, a
plurality of policies to apply to a received packet stream, at
least one policy of the plurality of policies comprising a
policy identifier; processing, by the appliance, a first policy
of the plurality of policies, the first policy identifying (i) a
rule comprising a first expression and (ii) a first action to be
taken based on an evaluation of the rule, and (iii) a second
policy of the plurality of policies; determining, by the
appliance based on an evaluation of the expression, the rule
evaluates to true; and processing, by the appliance in
response to the determination, the identified second policy.
Corresponding systems may include a packet processor for
receiving a packet stream, and a policy engine for evaluating
one or more policies and taking associated actions.

In a sixth aspect, the present invention relates to systems
and methods for configuring and/or processing flow control
among policy groups used in a network device processing a
packet stream. In one embodiment, a method comprises:
providing a configuration interface for configuring a plural-
ity of policy groups for a network device; identifying, by the
configuration interface, a first policy of a first policy group,

20

25

35

40

45

55

60

4

the first policy specifying a rule comprising a first expres-
sion; and receiving, via the interface, information identify-
ing a second policy group to be processed based on an
evaluation of the rule. In another embodiment, a method
comprises: identifying, by an appliance, a first policy group
to apply to a received packet stream; processing, by the
appliance, a first policy of the first policy group, the first
policy identitying (i) a rule comprising a first expression,
and (ii) information identifying a second policy group;
evaluating, by the appliance, the rule; and processing, by the
appliance in response to the evaluation of the rule, the
identified second policy group. Corresponding systems may
include a packet processor for receiving a packet stream and
a policy engine for evaluating one or more policies and
taking associated actions.

In a seventh aspect, the present invention relates to
systems and methods for configuring and/or processing one
or more application security profiles for a device, each
application security profile specifying a number of checks
performing security functions related to an application. In
one embodiment, a method comprises: providing a configu-
ration interface for configuring an application security pro-
file; receiving, via the configuration interface, a first setting,
the setting specifying corresponding to a first check of the
application security profile; receiving, via the configuration
interface, a second setting, the second setting specifying
corresponding to a second check of the application security
profile; identifying, by the configuration interface, a policy,
the policy specifying a rule comprising a first expression;
and receiving, via the interface, information identifying the
application security profile to be processed based on an
evaluation of the rule. In another embodiment, a method
may comprise identifying, by an appliance, a first policy to
apply to a received packet stream; the first policy specifying
a rule comprising a first expression and identifying an
application security profile; evaluating, by the appliance, the
rule; processing, by the appliance in response to the evalu-
ation of the rule, a first check specified by the application
security profile; and processing, by the appliance in response
to the evaluation of the rule, a second check specified by the
application security profile. Corresponding systems may
include a packet processor for receiving a packet stream and
a policy engine for evaluating one or more application
security profiles and taking associated actions.

The details of various embodiments of the invention are
set forth in the accompanying drawings and the description
below.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram of an embodiment of a
network environment for a client to access a server via an
appliance;

FIG. 1B is a block diagram of another embodiment of a
network environment for delivering a computing environ-
ment from a server to a client via a plurality of appliances;

FIG. 1C is a block diagram of another embodiment of a
network environment for delivering a computing environ-
ment from a server to a client via one or more different
appliances;

US 9,450,837 B2

5

FIG. 1D is a block diagram of an embodiment of an
environment for delivering a computing environment from a
server to a client via a network;

FIGS. 1E and 1F are block diagrams of embodiments of
a computing device;

FIG. 2A is a block diagram of an embodiment of an
appliance for processing communications between a client
and a server;

FIG. 2B is a block diagram of another embodiment of an
appliance for optimizing, accelerating, load-balancing and
routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for
communicating with a server via the appliance;

FIG. 4Ais a diagram of an example object model that may
be used to structure HTTP communications;

FIG. 4B is an example screen of documentation for an
object model that may be used to structure HTTP commu-
nications;

FIG. 4C illustrates a number of example object-oriented
expressions relating to HT'TP communications;

FIG. 5 illustrates an example of a policy;

FIG. 6 is an example screen that may be used to configure
one or more expressions;

FIG. 7A is an example screen of a configuration interface
that may be used to configure policies for a network device;

FIG. 7B is a block diagram of one embodiment of a
configuration interface executing on a client;

FIG. 8Ais a flow diagram of one embodiment of a method
for configuring a policy expression;

FIG. 8B is a flow diagram of one embodiment of a method
for processing an object-oriented expression in a network
appliance;

FIG. 8C is a low diagram of one embodiment of a method
for using object-oriented expressions to rewrite portions of
a received packet stream;

FIG. 9 is a flow diagram of one embodiment of a method
for handling undefined policy elements;

FIG. 10A is a diagram of an example of one embodiment
of a policy bank;

FIG. 10B is a flow diagram of one embodiment for
controlling processing order in a group of policies;

FIG. 11A is a block diagram of one embodiment of
controlling processing order among a plurality of policy
groups.

FIG. 11B is a block diagram of one embodiment of a
method of controlling processing order among a plurality of
policy groups;

FIG. 12 illustrates a number of example configuration
screens which may be used to configure an application
security profile;

FIG. 13A is a flow diagram of one embodiment of a
method for configuring an application security profile; and

FIG. 13B is a flow diagram of one embodiment of a
method for processing an application security profile.

The features and advantages of the present invention will
become more apparent from the detailed description set
forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding ele-
ments throughout. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or
structurally similar elements.

DETAILED DESCRIPTION OF THE
INVENTION

For purposes of reading the description of the various
embodiments of the present invention below, the following

5

10

15

20

25

30

35

40

45

50

55

60

65

6

descriptions of the sections of the specification and their
respective contents may be helpful:

Section A describes a network environment and comput-
ing environment useful for practicing an embodiment
of the present invention;

Section B describes embodiments of a system and appli-
ance architecture for accelerating delivery of a com-
puting environment to a remote user;

Section C describes embodiments of a client agent for
accelerating communications between a client and a
server;

Section D describes embodiments of systems and meth-
ods for configuring and using object-oriented policy
expressions;

Section E describes embodiments of systems and methods
for handling undefined policy expressions;

Section F describes embodiments of systems and methods
for configuring and using policy groups; and

Section G describes embodiments of systems and meth-
ods for configuring and using application security pro-
files.

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the
systems and methods of an appliance and/or client, it may be
helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring
now to FIG. 1A, an embodiment of a network environment
is depicted. In brief overview, the network environment
comprises one or more clients 102¢-102% (also generally
referred to as local machine(s) 102, or client(s) 102) in
communication with one or more servers 106a-106» (also
generally referred to as servers) 106, or remote machine(s)
106) via one or more networks 104, 104' (generally referred
to as network 104). In some embodiments, a client 102
communicates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network
104' between the clients 102 and the servers 106, the clients
102 and the servers 106 may be on the same network 104.
The networks 104 and 104' can be the same type of network
or different types of networks. The network 104 and/or the
network 104' can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
Wide Web. In one embodiment, network 104' may be a
private network and network 104 may be a public network.
In some embodiments, network 104 may be a private
network and network 104' a public network. In another
embodiment, networks 104 and 104' may both be private
networks. In some embodiments, clients 102 may be located
at a branch office of a corporate enterprise communicating
via a WAN connection over the network 104 to the servers
106 located at a corporate data center.

The network 104 and/or 104' be any type and/or form of
network and may include any of the following: a point to
point network, a broadcast network, a wide area network, a
local area network, a telecommunications network, a data
communication network, a computer network, an ATM
(Asynchronous Transfer Mode) network, a SONET (Syn-
chronous Optical Network) network, a SDH (Synchronous
Digital Hierarchy) network, a wireless network and a wire-
line network. In some embodiments, the network 104 may
comprise a wireless link, such as an infrared channel or
satellite band. The topology of the network 104 and/or 104'
may be a bus, star, or ring network topology. The network
104 and/or 104' and network topology may be of any such

US 9,450,837 B2

7

network or network topology as known to those ordinarily
skilled in the art capable of supporting the operations
described herein.

As shown in FIG. 1A, the appliance 200, which also may
be referred to as an interface unit 200 or gateway 200, is
shown between the networks 104 and 104'. In some embodi-
ments, the appliance 200 may be located on network 104.
For example, a branch office of a corporate enterprise may
deploy an appliance 200 at the branch office. In other
embodiments, the appliance 200 may be located on network
104'. For example, an appliance 200 may be located at a
corporate data center. In yet another embodiment, a plurality
of'appliances 200 may be deployed on network 104. In some
embodiments, a plurality of appliances 200 may be deployed
on network 104'. In one embodiment, a first appliance 200
communicates with a second appliance 200'. In other
embodiments, the appliance 200 could be a part of any client
102 or server 106 on the same or different network 104,104'
as the client 102. One or more appliances 200 may be
located at any point in the network or network communi-
cations path between a client 102 and a server 106.

In some embodiments, the appliance 200 comprises any
of'the network devices manufactured by Citrix Systems, Inc.
of Ft. Lauderdale Fla., referred to as Citrix NetScaler
devices. In other embodiments, the appliance 200 includes
any of the product embodiments referred to as WebAccel-
erator and BigIP manufactured by F5 Networks, Inc. of
Seattle, Wash. In another embodiment, the appliance 205
includes any of the DX acceleration device platforms and/or
the SSL VPN series of devices, such as SA 700, SA 2000,
SA 4000, and SA 6000 devices manufactured by Juniper
Networks, Inc. of Sunnyvale, Calif. In yet another embodi-
ment, the appliance 200 includes any application accelera-
tion and/or security related appliances and/or software
manufactured by Cisco Systems, Inc. of San Jose, Calif.,
such as the Cisco ACE Application Control Engine Module
service software and network modules, and Cisco AVS
Series Application Velocity System.

In one embodiment, the system may include multiple,
logically-grouped servers 106. In these embodiments, the
logical group of servers may be referred to as a server farm
38. In some of these embodiments, the serves 106 may be
geographically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. In
one embodiment, the server farm executes one or more
applications on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heteroge-
neous. One or more of the servers 106 can operate according
to one type of operating system platform (e.g., WINDOWS
NT, manufactured by Microsoft Corp. of Redmond, Wash.),
while one or more of the other servers 106 can operate on
according to another type of operating system platform (e.g.,
Unix or Linux). The servers 106 of each farm 38 do not need
to be physically proximate to another server 106 in the same
farm 38. Thus, the group of servers 106 logically grouped as
a farm 38 may be interconnected using a wide-area network
(WAN) connection or medium-area network (MAN) con-
nection. For example, a farm 38 may include servers 106
physically located in different continents or different regions
of a continent, country, state, city, campus, or room. Data
transmission speeds between servers 106 in the farm 38 can
be increased if the servers 106 are connected using a
local-area network (LAN) connection or some form of direct
connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiments, a server 106 may have the capacity to func-
tion as either an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client
102 has the capacity to function as both a client node seeking
access to applications on a server and as an application
server providing access to hosted applications for other
clients 1024-1027.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communi-
cates directly with one of the servers 106 in a farm 38. In
another embodiment, the client 102 executes a program
neighborhood application to communicate with a server 106
in a farm 38. In still another embodiment, the server 106
provides the functionality of a master node. In some embodi-
ments, the client 102 communicates with the server 106 in
the farm 38 through a network 104. Over the network 104,
the client 102 can, for example, request execution of various
applications hosted by the servers 106a-106% in the farm 38
and receive output of the results of the application execution
for display. In some embodiments, only the master node
provides the functionality required to identify and provide
address information associated with a server 106' hosting a
requested application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests from the client 102, forwards the requests
to a second server 1065 and responds to the request by the
client 102 with a response to the request from the server
10654. In still another embodiment, the server 106 acquires
an enumeration of applications available to the client 102
and address information associated with a server 106 hosting
an application identified by the enumeration of applications.
In yet another embodiment, the server 106 presents the
response to the request to the client 102 using a web
interface. In one embodiment, the client 102 communicates
directly with the server 106 to access the identified appli-
cation. In another embodiment, the client 102 receives
application output data, such as display data, generated by
an execution of the identified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network
environment deploying multiple appliances 200 is depicted.
A first appliance 200 may be deployed on a first network 104
and a second appliance 200' on a second network 104'. For
example a corporate enterprise may deploy a first appliance
200 at a branch office and a second appliance 200" at a data
center. In another embodiment, the first appliance 200 and
second appliance 200' are deployed on the same network
104 or network 104. For example, a first appliance 200 may
be deployed for a first server farm 38, and a second
appliance 200 may be deployed for a second server farm 38'.
In another example, a first appliance 200 may be deployed
at a first branch office while the second appliance 200" is
deployed at a second branch office'. In some embodiments,
the first appliance 200 and second appliance 200' work in
cooperation or in conjunction with each other to accelerate
network traffic or the delivery of application and data
between a client and a server

Referring now to FIG. 1C, another embodiment of a
network environment deploying the appliance 200 with one
or more other types of appliances, such as between one or
more WAN optimization appliance 205, 205' is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104' and s second WAN optimi-
zation appliance 205' may be deployed between the appli-
ance 200 and one or more servers 106. By way of example,

US 9,450,837 B2

9

a corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN opti-
mization appliance 205" at a data center. In some embodi-
ments, the appliance 205 may be located on network 104'. In
other embodiments, the appliance 205' may be located on
network 104. In some embodiments, the appliance 205' may
be located on network 104' or network 104". In one embodi-
ment, the appliance 205 and 205' are on the same network.
In another embodiment, the appliance 205 and 205' are on
different networks. In another example, a first WAN opti-
mization appliance 205 may be deployed for a first server
farm 38 and a second WAN optimization appliance 205' for
a second server farm 38'

In one embodiment, the appliance 205 is a device for
accelerating, optimizing or otherwise improving the perfor-
mance, operation, or quality of service of any type and form
of network traffic, such as traffic to and/or from a WAN
connection. In some embodiments, the appliance 205 is a
performance enhancing proxy. In other embodiments, the
appliance 205 is any type and form of WAN optimization or
acceleration device, sometimes also referred to as a WAN
optimization controller. In one embodiment, the appliance
205 is any of the product embodiments referred to as
WANScaler manufactured by Citrix Systems, Inc. of Ft.
Lauderdale, Fla. In other embodiments, the appliance 205
includes any of the product embodiments referred to as
BIG-IP link controller and WANjet manufactured by F5
Networks, Inc. of Seattle, Wash. In another embodiment, the
appliance 205 includes any of the WX and WXC WAN
acceleration device platforms manufactured by Juniper Net-
works, Inc. of Sunnyvale, Calif. In some embodiments, the
appliance 205 includes any of the steelhead line of WAN
optimization appliances manufactured by Riverbed Technol-
ogy of San Francisco, Calif. In other embodiments, the
appliance 205 includes any of the WAN related devices
manufactured by Expand Networks Inc. of Roseland, N.J. In
one embodiment, the appliance 205 includes any of the
WAN related appliances manufactured by Packeteer Inc. of
Cupertino, Calif., such as the PacketShaper, iShared, and
SkyX product embodiments provided by Packeteer. In yet
another embodiment, the appliance 205 includes any WAN
related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, Calif., such as the Cisco Wide
Area Network Application Services software and network
modules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides applica-
tion and data acceleration services for branch-office or
remote offices. In one embodiment, the appliance 205
includes optimization of Wide Area File Services (WAFS).
In another embodiment, the appliance 205 accelerates the
delivery of files, such as via the Common Internet File
System (CIFS) protocol. In other embodiments, the appli-
ance 205 provides caching in memory and/or storage to
accelerate delivery of applications and data. In one embodi-
ment, the appliance 205 provides compression of network
traffic at any level of the network stack or at any protocol or
network layer. In another embodiment, the appliance 205
provides transport layer protocol optimizations, flow con-
trol, performance enhancements or modifications and/or
management to accelerate delivery of applications and data
over a WAN connection. For example, in one embodiment,
the appliance 205 provides Transport Control Protocol
(TCP) optimizations. In other embodiments, the appliance
205 provides optimizations, flow control, performance
enhancements or modifications and/or management for any
session or application layer protocol.

20

25

30

40

45

50

55

10

In another embodiment, the appliance 205 encoded any
type and form of data or information into custom or standard
TCP and/or IP header fields or option fields of network
packet to announce presence, functionality or capability to
another appliance 205'. In another embodiment, an appli-
ance 205' may communicate with another appliance 205'
using data encoded in both TCP and/or IP header fields or
options. For example, the appliance may use TCP option(s)
or IP header fields or options to communicate one or more
parameters to be used by the appliances 205, 205" in per-
forming functionality, such as WAN acceleration, or for
working in conjunction with each other.

In some embodiments, the appliance 200 preserves any of
the information encoded in TCP and/or IP header and/or
option fields communicated between appliances 205 and
205'. For example, the appliance 200 may terminate a
transport layer connection traversing the appliance 200, such
as a transport layer connection from between a client and a
server traversing appliances 205 and 205'. In one embodi-
ment, the appliance 200 identifies and preserves any
encoded information in a transport layer packet transmitted
by a first appliance 205 via a first transport layer connection
and communicates a transport layer packet with the encoded
information to a second appliance 205' via a second trans-
port layer connection.

Referring now to FIG. 1D, a network environment for
delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104' and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing envi-
ronment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

In some embodiments, the appliance 200 accelerates
delivery of a computing environment 15, or any portion
thereof, to a client 102. In one embodiment, the appliance
200 accelerates the delivery of the computing environment
15 by the application delivery system 190. For example, the
embodiments described herein may be used to accelerate
delivery of a streaming application and data file processable
by the application from a central corporate data center to a
remote user location, such as a branch office of the company.
In another embodiment, the appliance 200 accelerates trans-
port layer traffic between a client 102 and a server 106. The
appliance 200 may provide acceleration techniques for
accelerating any transport layer payload from a server 106 to
a client 102, such as: 1) transport layer connection pooling,
2) transport layer connection multiplexing, 3) transport
control protocol buffering, 4) compression and 5) caching.
In some embodiments, the appliance 200 provides load
balancing of servers 106 in responding to requests from
clients 102. In other embodiments, the appliance 200 acts as
a proxy or access server to provide access to the one or more
servers 106. In another embodiment, the appliance 200
provides a secure virtual private network connection from a
first network 104 of the client 102 to the second network
104' of the server 106, such as an SSL. VPN connection. It
yet other embodiments, the appliance 200 provides appli-

US 9,450,837 B2

11

cation firewall security, control and management of the
connection and communications between a client 102 and a
server 106.

In some embodiments, the application delivery manage-
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution
methods and based on any authentication and authorization
policies applied via a policy engine 195. With these tech-
niques, a remote user may obtain a computing environment
and access to server stored applications and data files from
any network connected device 100. In one embodiment, the
application delivery system 190 may reside or execute on a
server 106. In another embodiment, the application delivery
system 190 may reside or execute on a plurality of servers
106a-106%. In some embodiments, the application delivery
system 190 may execute in a server farm 38. In one
embodiment, the server 106 executing the application deliv-
ery system 190 may also store or provide the application and
data file. In another embodiment, a first set of one or more
servers 106 may execute the application delivery system
190, and a different server 106 may store or provide the
application and data file. In some embodiments, each of the
application delivery system 190, the application, and data
file may reside or be located on different servers. In yet
another embodiment, any portion of the application delivery
system 190 may reside, execute or be stored on or distrib-
uted to the appliance 200, or a plurality of appliances.

The client 102 may include a computing environment 15
for executing an application that uses or processes a data file.
The client 102 via networks 104, 104' and appliance 200
may request an application and data file from the server 106.
In one embodiment, the appliance 200 may forward a
request from the client 102 to the server 106. For example,
the client 102 may not have the application and data file
stored or accessible locally. In response to the request, the
application delivery system 190 and/or server 106 may
deliver the application and data file to the client 102. For
example, in one embodiment, the server 106 may transmit
the application as an application stream to operate in com-
puting environment 15 on client 102.

In some embodiments, the application delivery system
190 comprises any portion of the Citrix Access Suite™ by
Citrix Systems, Inc., such as the MetaFrame or Citrix
Presentation Server™ and/or any of the Microsoft® Win-
dows Terminal Services manufactured by the Microsoft
Corporation. In one embodiment, the application delivery
system 190 may deliver one or more applications to clients
102 or users via a remote-display protocol or otherwise via
remote-based or server-based computing. In another
embodiment, the application delivery system 190 may
deliver one or more applications to clients or users via
steaming of the application.

In one embodiment, the application delivery system 190
includes a policy engine 195 for controlling and managing
the access to, selection of application execution methods and
the delivery of applications. In some embodiments, the
policy engine 195 determines the one or more applications
a user or client 102 may access. In another embodiment, the
policy engine 195 determines how the application should be
delivered to the user or client 102, e.g., the method of
execution. In some embodiments, the application delivery
system 190 provides a plurality of delivery techniques from
which to select a method of application execution, such as
a server-based computing, streaming or delivering the appli-
cation locally to the client 120 for local execution.

10

15

20

25

30

35

40

45

50

55

60

65

12

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi-
ment, the server 106 receives a request for an enumeration
of'available applications from the client 102. In one embodi-
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli-
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system
190 selects one of a predetermined number of methods for
executing the enumerated application, for example, respon-
sive to a policy of a policy engine. The application delivery
system 190 may select a method of execution of the appli-
cation enabling the client 102 to receive application-output
data generated by execution of the application program on a
server 106. The application delivery system 190 may select
a method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the
application. In yet another embodiment, the application
delivery system 190 may select a method of execution of the
application to stream the application via the network 104 to
the client 102.

A client 102 may execute, operate or otherwise provide an
application, which can be any type and/or form of software,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli-
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf of the client
102 on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Comput-
ing Architecture (ICA) protocol manufactured by Citrix
Systems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi-
ments, the application comprises any type of software
related to VoIP communications, such as a soft IP telephone.
In further embodiments, the application comprises any
application related to real-time data communications, such
as applications for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an
application providing a thin-client computing or remote
display presentation application. In one embodiment, the
server 106 or server farm 38 executes as an application, any
portion of the Citrix Access Suite™ by Citrix Systems, Inc.,
such as the MetaFrame or Citrix Presentation Server™,
and/or any of the Microsoft® Windows Terminal Services
manufactured by the Microsoft Corporation. In one embodi-
ment, the application is an ICA client, developed by Citrix
Systems, Inc. of Fort Lauderdale, Fla. In other embodi-
ments, the application includes a Remote Desktop (RDP)
client, developed by Microsoft Corporation of Redmond,
Wash. Also, the server 106 may run an application, which for
example, may be an application server providing email
services such as Microsoft Exchange manufactured by the
Microsoft Corporation of Redmond, Wash., a web or Inter-
net server, or a desktop sharing server, or a collaboration

US 9,450,837 B2

13

server. In some embodiments, any of the applications may
comprise any type of hosted service or products, such as
GoToMeeting™ provided by Citrix Online Division, Inc. of
Santa Barbara, Calif., WebEx™ provided by WebEx, Inc. of
Santa Clara, Calif., or Microsoft Office Live Meeting pro-
vided by Microsoft Corporation of Redmond, Wash.

Still referring to FIG. 1D, an embodiment of the network
environment may include a monitoring server 106A. The
monitoring server 106 A may include any type and form
performance monitoring service 198. The performance
monitoring service 198 may include monitoring, measure-
ment and/or management software and/or hardware, includ-
ing data collection, aggregation, analysis, management and
reporting. In one embodiment, the performance monitoring
service 198 includes one or more monitoring agents 197.
The monitoring agent 197 includes any software, hardware
or combination thereof for performing monitoring, measure-
ment and data collection activities on a device, such as a
client 102, server 106 or an appliance 200, 205. In some
embodiments, the monitoring agent 197 includes any type
and form of script, such as Visual Basic script, or Javascript.
In one embodiment, the monitoring agent 197 executes
transparently to any application and/or user of the device. In
some embodiments, the monitoring agent 197 is installed
and operated unobtrusively to the application or client. In yet
another embodiment, the monitoring agent 197 is installed
and operated without any instrumentation for the application
or device.

In some embodiments, the monitoring agent 197 moni-
tors, measures and collects data on a predetermined fre-
quency. In other embodiments, the monitoring agent 197
monitors, measures and collects data based upon detection
of any type and form of event. For example, the monitoring
agent 197 may collect data upon detection of a request for
a web page or receipt of an HTTP response. In another
example, the monitoring agent 197 may collect data upon
detection of any user input events, such as a mouse click.
The monitoring agent 197 may report or provide any moni-
tored, measured or collected data to the monitoring service
198. In one embodiment, the monitoring agent 197 transmits
information to the monitoring service 198 according to a
schedule or a predetermined frequency. In another embodi-
ment, the monitoring agent 197 transmits information to the
monitoring service 198 upon detection of an event.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of any network resource or network infrastruc-
ture element, such as a client, server, server farm, appliance
200, appliance 205, or network connection. In one embodi-
ment, the monitoring service 198 and/or monitoring agent
197 performs monitoring and performance measurement of
any transport layer connection, such as a TCP or UDP
connection. In another embodiment, the monitoring service
198 and/or monitoring agent 197 monitors and measures
network latency. In yet one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and
measures bandwidth utilization.

In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring ser-
vice 198 performs monitoring and performance measure-
ment of an application. In another embodiment, the moni-
toring service 198 and/or monitoring agent 197 performs
monitoring and performance measurement of any session or
connection to the application. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of a browser. In another

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of HTTP
based transactions. In some embodiments, the monitoring
service 198 and/or monitoring agent 197 monitors and
measures performance of a Voice over IP (VoIP) application
or session. In other embodiments, the monitoring service
198 and/or monitoring agent 197 monitors and measures
performance of a remote display protocol application, such
as an ICA client or RDP client. In yet another embodiment,
the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of any type and form of
streaming media. In still a further embodiment, the moni-
toring service 198 and/or monitoring agent 197 monitors and
measures performance of a hosted application or a Software-
As-A-Service (SaaS) delivery model.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of one or more transactions, requests or
responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as
appliance 200 and/or appliance 205. In some embodiments,
the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of delivery of a virtu-
alized application. In other embodiments, the monitoring
service 198 and/or monitoring agent 197 monitors and
measures performance of delivery of a streaming applica-
tion. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor-
mance of delivery of a desktop application to a client and/or
the execution of the desktop application on the client. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance
of a client/server application.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 is designed and constructed to provide
application performance management for the application
delivery system 190. For example, the monitoring service
198 and/or monitoring agent 197 may monitor, measure and
manage the performance of the delivery of applications via
the Citrix Presentation Server. In this example, the moni-
toring service 198 and/or monitoring agent 197 monitors
individual ICA sessions. The monitoring service 198 and/or
monitoring agent 197 may measure the total and per session
system resource usage, as well as application and network-
ing performance. The monitoring service 198 and/or moni-
toring agent 197 may identify the active servers for a given
user and/or user session. In some embodiments, the moni-
toring service 198 and/or monitoring agent 197 monitors
back-end connections between the application delivery sys-
tem 190 and an application and/or database server. The
monitoring service 198 and/or monitoring agent 197 may
measure network latency, delay and volume per user-session
or ICA session.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors memory usage
for the application delivery system 190, such as total

US 9,450,837 B2

15

memory usage, per user session and/or per process. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 measures and monitors CPU usage the application
delivery system 190, such as total CPU usage, per user
session and/or per process. In another embodiments, the
monitoring service 198 and/or monitoring agent 197 mea-
sures and monitors the time required to log-in to an appli-
cation, a server, or the application delivery system, such as
Citrix Presentation Server. In one embodiment, the moni-
toring service 198 and/or monitoring agent 197 measures
and monitors the duration a user is logged into an applica-
tion, a server, or the application delivery system 190. In
some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors active and
inactive session counts for an application, server or appli-
cation delivery system session. In yet another embodiment,
the monitoring service 198 and/or monitoring agent 197
measures and monitors user session latency.

In yet further embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors mea-
sures and monitors any type and form of server metrics. In
one embodiment, the monitoring service 198 and/or moni-
toring agent 197 measures and monitors metrics related to
system memory, CPU usage, and disk storage. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to page
faults, such as page faults per second. In other embodiments,
the monitoring service 198 and/or monitoring agent 197
measures and monitors round-trip time metrics. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 measures and monitors metrics related
to application crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and
monitoring agent 198 includes any of the product embodi-
ments referred to as EdgeSight manufactured by Citrix
Systems, Inc. of Ft. Lauderdale, Fla. In another embodiment,
the performance monitoring service 198 and/or monitoring
agent 198 includes any portion of the product embodiments
referred to as the TrueView product suite manufactured by
the Symphoniq Corporation of Palo Alto, Calif. In one
embodiment, the performance monitoring service 198 and/
or monitoring agent 198 includes any portion of the product
embodiments referred to as the Teal.eaf CX product suite
manufactured by the Teal.eaf Technology Inc. of San Fran-
cisco, Calif. In other embodiments, the performance moni-
toring service 198 and/or monitoring agent 198 includes any
portion of the business service management products, such
as the BMC Performance Manager and Patrol products,
manufactured by BMC Software, Inc. of Houston, Tex.

The client 102, server 106, and appliance 200 may be
deployed as and/or executed on any type and form of
computing device, such as a computer, network device or
appliance capable of communicating on any type and form
of network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing
device 100 useful for practicing an embodiment of the client
102, server 106 or appliance 200. As shown in FIGS. 1E and
1F, each computing device 100 includes a central processing
unit 101, and a main memory unit 122. As shown in FIG. 1E,
a computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as
a mouse. Each computing device 100 may also include
additional optional elements, such as one or more input/
output devices 130a-1305 (generally referred to using ref-
erence numeral 130), and a cache memory 140 in commu-
nication with the central processing unit 101.

20

30

40

45

16

The central processing unit 101 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central pro-
cessing unit is provided by a microprocessor unit, such as:
those manufactured by Intel Corporation of Mountain View,
Calif.; those manufactured by Motorola Corporation of
Schaumburg, I1l.; those manufactured by Transmeta Corpo-
ration of Santa Clara, Calif.; the RS/6000 processor, those
manufactured by International Business Machines of White
Plains, N.Y.; or those manufactured by Advanced Micro
Devices of Sunnyvale, Calif. The computing device 100
may be based on any of these processors, or any other
processor capable of operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 101, such as
Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data Output DRAM (BEDO
DRAM), Enhanced DRAM (EDRAM), synchronous
DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM,
Double Data Rate SDRAM (DDR SDRAM), Enhanced
SDRAM (ESDRAM), SyncLink DRAM (SLDRAM),
Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM
(FRAM). The main memory 122 may be based on any of the
above described memory chips, or any other available
memory chips capable of operating as described herein. In
the embodiment shown in FIG. 1E, the processor 101
communicates with main memory 122 via a system bus 150
(described in more detail below). FIG. 1E depicts an
embodiment of a computing device 100 in which the pro-
cessor communicates directly with main memory 122 via a
memory port 103. For example, in FIG. 1F the main memory
122 may be DRDRAM.

FIG. 1F depicts an embodiment in which the main pro-
cessor 101 communicates directly with cache memory 140
via a secondary bus, sometimes referred to as a backside bus.
In other embodiments, the main processor 101 communi-
cates with cache memory 140 using the system bus 150.
Cache memory 140 typically has a faster response time than
main memory 122 and is typically provided by SRAM,
BSRAM, or EDRAM. In the embodiment shown in FIG. 1E,
the processor 101 communicates with various I/O devices
130 via a local system bus 150. Various busses may be used
to connect the central processing unit 101 to any of the I/O
devices 130, including a VESA VL bus, an ISA bus, an EISA
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, or a NuBus. For embodi-
ments in which the /O device is a video display 124, the
processor 101 may use an Advanced Graphics Port (AGP) to
communicate with the display 124. FIG. 1F depicts an
embodiment of a computer 100 in which the main processor
101 communicates directly with 1/0 device 130 via Hyper-
Transport, Rapid I/O, or InfiniBand. FIG. 1F also depicts an
embodiment in which local busses and direct communica-
tion are mixed: the processor 101 communicates with 1/O
device 130 using a local interconnect bus while communi-
cating with I/O device 130 directly.

The computing device 100 may support any suitable
installation device 116, such as a floppy disk drive for
receiving floppy disks such as 3.5-inch, 5.25-inch disks or
Z1P disks, a CD-ROM drive, a CD-R/RW drive, a DVD-
ROM drive, tape drives of various formats, USB device,
hard-drive or any other device suitable for installing soft-

US 9,450,837 B2

17

ware and programs such as any client agent 120, or portion
thereof. The computing device 100 may further comprise a
storage device 128, such as one or more hard disk drives or
redundant arrays of independent disks, for storing an oper-
ating system and other related software, and for storing
application software programs such as any program related
to the client agent 120. Optionally, any of the installation
devices 116 could also be used as the storage device 128.
Additionally, the operating system and the software can be
run from a bootable medium, for example, a bootable CD,
such as KNOPPIX®, a bootable CD for GNU/Linux that is
available as a GNU/Linux distribution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through
a variety of connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., 802.11,
T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN,
Frame Relay, ATM), wireless connections, or some combi-
nation of any or all of the above. The network interface 118
may comprise a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter,
wireless network adapter, USB network adapter, modem or
any other device suitable for interfacing the computing
device 100 to any type of network capable of communica-
tion and performing the operations described herein.

A wide variety of /O devices 130a-1307 may be present
in the computing device 100. Input devices include key-
boards, mice, trackpads, trackballs, microphones, and draw-
ing tablets. Output devices include video displays, speakers,
inkjet printers, laser printers, and dye-sublimation printers.
The I/O devices 130 may be controlled by an /O controller
123 as shown in FIG. 1E. The I/O controller may control one
or more [/O devices such as a keyboard 126 and a pointing
device 127, e.g., a mouse or optical pen. Furthermore, an [/O
device may also provide storage 128 and/or an installation
medium 116 for the computing device 100. In still other
embodiments, the computing device 100 may provide USB
connections to receive handheld USB storage devices such
as the USB Flash Drive line of devices manufactured by
Twintech Industry, Inc. of Los Alamitos, Calif.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a-
124n, which each may be of the same or different type and/or
form. As such, any of the /O devices 130a-130# and/or the
1/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and
use of multiple display devices 124a-124r by the computing
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124n. In one
embodiment, a video adapter may comprise multiple con-
nectors to interface to multiple display devices 124a-124n.
In other embodiments, the computing device 100 may
include multiple video adapters, with each video adapter
connected to one or more of the display devices 124a-124n.
In some embodiments, any portion of the operating system
of the computing device 100 may be configured for using
multiple displays 124a-124%. In other embodiments, one or
more of the display devices 124a-124r may be provided by
one or more other computing devices, such as computing
devices 100a and 1005 connected to the computing device
100, for example, via a network. These embodiments may
include any type of software designed and constructed to use
another computer’s display device as a second display

20

25

35

40

45

50

18

device 124a for the computing device 100. One ordinarily
skilled in the art will recognize and appreciate the various
ways and embodiments that a computing device 100 may be
configured to have multiple display devices 124a-124n.

In further embodiments, an /O device 130 may be a
bridge 170 between the system bus 150 and an external
communication bus, such as a USB bus, an Apple Desktop
Bus, an RS-232 serial connection, a SCSI bus, a FireWire
bus, a FireWire 800 bus, an Ethernet bus, an AppleTalk bus,
a Gigabit Ethernet bus, an Asynchronous Transfer Mode
bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a
SCI/LAMP bus, a FibreChannel bus, or a Serial Attached
small computer system interface bus.

A computing device 100 of the sort depicted in FIGS. 1E
and 1F typically operate under the control of operating
systems, which control scheduling of tasks and access to
system resources. The computing device 100 can be running
any operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases of the Unix and Linux operating systems, any
version of the Mac OS® for Macintosh computers, any
embedded operating system, any real-time operating system,
any open source operating system, any proprietary operating
system, any operating systems for mobile computing
devices, or any other operating system capable of running on
the computing device and performing the operations
described herein. Typical operating systems include: WIN-
DOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS
2000, WINDOWS NT 3.51, WINDOWS NT 4.0, WIN-
DOWS CE, and WINDOWS XP, all of which are manufac-
tured by Microsoft Corporation of Redmond, Wash.;
MacOS, manufactured by Apple Computer of Cupertino,
Calif.; OS/2, manufactured by International Business
Machines of Armonk, N.Y.; and Linux, a freely-available
operating system distributed by Caldera Corp. of Salt Lake
City, Utah, or any type and/or form of a Unix operating
system, among others.

In other embodiments, the computing device 100 may
have different processors, operating systems, and input
devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600
or 650 smart phone manufactured by Palm, Inc. In this
embodiment, the Treo smart phone is operated under the
control of the PalmOS operating system and includes a
stylus input device as well as a five-way navigator device.
Moreover, the computing device 100 can be any worksta-
tion, desktop computer, laptop or notebook computer, server,
handheld computer, mobile telephone, any other computer,
or other form of computing or telecommunications device
that is capable of communication and that has sufficient
processor power and memory capacity to perform the opera-
tions described herein.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appli-
ance 200. The architecture of the appliance 200 in FIG. 2A
is provided by way of illustration only and is not intended to
be limiting. As shown in FIG. 2, appliance 200 comprises a
hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon
which programs and services within kernel space 204 and
user space 202 are executed. Hardware layer 206 also
provides the structures and elements which allow programs
and services within kernel space 204 and user space 202 to
communicate data both internally and externally with
respect to appliance 200. As shown in FIG. 2, the hardware
layer 206 includes a processing unit 262 for executing

US 9,450,837 B2

19

software programs and services, a memory 264 for storing
software and data, network ports 266 for transmitting and
receiving data over a network, and an encryption processor
260 for performing functions related to Secure Sockets
Layer processing of data transmitted and received over the
network. In some embodiments, the central processing unit
262 may perform the functions of the encryption processor
260 in a single processor. Additionally, the hardware layer
206 may comprise multiple processors for each of the
processing unit 262 and the encryption processor 260. The
processor 262 may include any of the processors 101
described above in connection with FIGS. 1E and 1F. In
some embodiments, the central processing unit 262 may
perform the functions of the encryption processor 260 in a
single processor. Additionally, the hardware layer 206 may
comprise multiple processors for each of the processing unit
262 and the encryption processor 260. For example, in one
embodiment, the appliance 200 comprises a first processor
262 and a second processor 262'. In other embodiments, the
processor 262 or 262' comprises a multi-core processor.

Although the hardware layer 206 of appliance 200 is
generally illustrated with an encryption processor 260, pro-
cessor 260 may be a processor for performing functions
related to any encryption protocol, such as the Secure Socket
Layer (SSL) or Transport Layer Security (TLS) protocol. In
some embodiments, the processor 260 may be a general
purpose processor (GPP), and in further embodiments, may
be have executable instructions for performing processing of
any security related protocol.

Although the hardware layer 206 of appliance 200 is
illustrated with certain elements in FIG. 2, the hardware
portions or components of appliance 200 may comprise any
type and form of elements, hardware or software, of a
computing device, such as the computing device 100 illus-
trated and discussed herein in conjunction with FIGS. 1E
and 1F. In some embodiments, the appliance 200 may
comprise a server, gateway, router, switch, bridge or other
type of computing or network device, and have any hard-
ware and/or software elements associated therewith.

The operating system of appliance 200 allocates, man-
ages, or otherwise segregates the available system memory
into kernel space 204 and user space 204. In example
software architecture 200, the operating system may be any
type and/or form of Unix operating system although the
invention is not so limited. As such, the appliance 200 can
be running any operating system such as any of the versions
of the Microsoft® Windows operating systems, the different
releases of the Unix and Linux operating systems, any
version of the Mac OS® for Macintosh computers, any
embedded operating system, any network operating system,
any real-time operating system, any open source operating
system, any proprietary operating system, any operating
systems for mobile computing devices or network devices,
or any other operating system capable of running on the
appliance 200 and performing the operations described
herein.

The kernel space 204 is reserved for running the kernel
230, including any device drivers, kernel extensions or other
kernel related software. As known to those skilled in the art,
the kernel 230 is the core of the operating system, and
provides access, control, and management of resources and
hardware-related elements of the application 104. In accor-
dance with an embodiment of the appliance 200, the kernel
space 204 also includes a number of network services or
processes working in conjunction with a cache manager 232,
sometimes also referred to as the integrated cache, the
benefits of which are described in detail further herein.

10

15

20

25

30

35

40

45

50

55

60

65

20
Additionally, the embodiment of the kernel 230 will depend
on the embodiment of the operating system installed, con-
figured, or otherwise used by the device 200.

In one embodiment, the device 200 comprises one net-
work stack 267, such as a TCP/IP based stack, for commu-
nicating with the client 102 and/or the server 106. In one
embodiment, the network stack 267 is used to communicate
with a first network, such as network 108, and a second
network 110. In some embodiments, the device 200 termi-
nates a first transport layer connection, such as a TCP
connection of a client 102, and establishes a second transport
layer connection to a server 106 for use by the client 102,
e.g., the second transport layer connection is terminated at
the appliance 200 and the server 106. The first and second
transport layer connections may be established via a single
network stack 267. In other embodiments, the device 200
may comprise multiple network stacks, for example 267 and
267", and the first transport layer connection may be estab-
lished or terminated at one network stack 267, and the
second transport layer connection on the second network
stack 267'. For example, one network stack may be for
receiving and transmitting network packet on a first net-
work, and another network stack for receiving and trans-
mitting network packets on a second network. In one
embodiment, the network stack 267 comprises a buffer 243
for queuing one or more network packets for transmission
by the appliance 200.

As shown in FIG. 2, the kernel space 204 includes the
cache manager 232, a high-speed layer 2-7 integrated packet
engine 240, an encryption engine 234, a policy engine 236
and multi-protocol compression logic 238. Running these
components or processes 232, 240, 234, 236 and 238 in
kernel space 204 or kernel mode instead of the user space
202 improves the performance of each of these components,
alone and in combination. Kernel operation means that these
components or processes 232, 240, 234, 236 and 238 run in
the core address space of the operating system of the device
200. For example, running the encryption engine 234 in
kernel mode improves encryption performance by moving
encryption and decryption operations to the kernel, thereby
reducing the number of transitions between the memory
space or a kernel thread in kernel mode and the memory
space or a thread in user mode. For example, data obtained
in kernel mode may not need to be passed or copied to a
process or thread running in user mode, such as from a
kernel level data structure to a user level data structure. In
another aspect, the number of context switches between
kernel mode and user mode are also reduced. Additionally,
synchronization of and communications between any of the
components or processes 232, 240, 235,236 and 238 can be
performed more efficiently in the kernel space 204.

In some embodiments, any portion of the components
232, 240,234, 236 and 238 may run or operate in the kernel
space 204, while other portions of these components 232,
240, 234, 236 and 238 may run or operate in user space 202.
In one embodiment, the appliance 200 uses a kernel-level
data structure providing access to any portion of one or more
network packets, for example, a network packet comprising
a request from a client 102 or a response from a server 106.
In some embodiments, the kernel-level data structure may
be obtained by the packet engine 240 via a transport layer
driver interface or filter to the network stack 267. The
kernel-level data structure may comprise any interface and/
or data accessible via the kernel space 204 related to the
network stack 267, network traffic or packets received or
transmitted by the network stack 267. In other embodiments,
the kernel-level data structure may be used by any of the

US 9,450,837 B2

21

components or processes 232, 240, 234, 236 and 238 to
perform the desired operation of the component or process.
In one embodiment, a component 232, 240, 234, 236 and
238 is running in kernel mode 204 when using the kernel-
level data structure, while in another embodiment, the
component 232, 240, 234, 236 and 238 is running in user
mode when using the kernel-level data structure. In some
embodiments, the kernel-level data structure may be copied
or passed to a second kernel-level data structure, or any
desired user-level data structure.

The cache manager 232 may comprise software, hardware
or any combination of software and hardware to provide
cache access, control and management of any type and form
of content, such as objects or dynamically generated objects
served by the originating servers 106. The data, objects or
content processed and stored by the cache manager 232 may
comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the
cache manager 232 duplicates original data stored elsewhere
or data previously computed, generated or transmitted, in
which the original data may require longer access time to
fetch, compute or otherwise obtain relative to reading a
cache memory element. Once the data is stored in the cache
memory element, future use can be made by accessing the
cached copy rather than refetching or recomputing the
original data, thereby reducing the access time. In some
embodiments, the cache memory element nat comprise a
data object in memory 264 of device 200. In other embodi-
ments, the cache memory element may comprise memory
having a faster access time than memory 264. In another
embodiment, the cache memory element may comprise any
type and form of storage element of the device 200, such as
a portion of a hard disk. In some embodiments, the process-
ing unit 262 may provide cache memory for use by the cache
manager 232. In yet further embodiments, the cache man-
ager 232 may use any portion and combination of memory,
storage, or the processing unit for caching data, objects, and
other content.

Furthermore, the cache manager 232 includes any logic,
functions, rules, or operations to perform any embodiments
of the techniques of the appliance 200 described herein. For
example, the cache manager 232 includes logic or function-
ality to invalidate objects based on the expiration of an
invalidation time period or upon receipt of an invalidation
command from a client 102 or server 106. In some embodi-
ments, the cache manager 232 may operate as a program,
service, process or task executing in the kernel space 204,
and in other embodiments, in the user space 202. In one
embodiment, a first portion of the cache manager 232
executes in the user space 202 while a second portion
executes in the kernel space 204. In some embodiments, the
cache manager 232 can comprise any type of general
purpose processor (GPP), or any other type of integrated
circuit, such as a Field Programmable Gate Array (FPGA),
Programmable Logic Device (PLD), or Application Specific
Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an
intelligent statistical engine or other programmable applica-
tion(s). In one embodiment, the policy engine 236 provides
a configuration mechanism to allow a user to identify,
specify, define or configure a caching policy. Policy engine
236, in some embodiments, also has access to memory to
support data structures such as lookup tables or hash tables
to enable user-selected caching policy decisions. In other
embodiments, the policy engine 236 may comprise any
logic, rules, functions or operations to determine and pro-
vide access, control and management of objects, data or

10

15

20

25

30

35

40

45

50

55

60

65

22

content being cached by the appliance 200 in addition to
access, control and management of security, network traffic,
network access, compression or any other function or opera-
tion performed by the appliance 200. Further examples of
specific caching policies are further described herein.

In some embodiments, the policy engine 236 may provide
a configuration mechanism to allow a user to identify,
specify, define or configure policies directing behavior of
any other components or functionality of an appliance
including, without limitation, the components described in
FIG. 2B such as vServers 275, VPN functions 280, Intranet
IP functions 282, switching functions 284, DNS functions
286, acceleration functions 288, application firewall func-
tions 290, and monitoring agents 197. In other embodi-
ments, the policy engine 236 may check, evaluate, imple-
ment, or otherwise act in response to any configured
policies, and may also direct the operation of one or more
appliance functions in response to a policy.

The encryption engine 234 comprises any logic, business
rules, functions or operations for handling the processing of
any security related protocol, such as SSL or TLS, or any
function related thereto. For example, the encryption engine
234 encrypts and decrypts network packets, or any portion
thereof, communicated via the appliance 200. The encryp-
tion engine 234 may also setup or establish SSL or TLS
connections on behalf of the client 1024-102#, server 106a-
106n, or appliance 200. As such, the encryption engine 234
provides offloading and acceleration of SSL processing. In
one embodiment, the encryption engine 234 uses a tunneling
protocol to provide a virtual private network between a
client 102a-1027 and a server 106a4-106x. In some embodi-
ments, the encryption engine 234 is in communication with
the Encryption processor 260. In other embodiments, the
encryption engine 234 comprises executable instructions
running on the Encryption processor 260.

The multi-protocol compression engine 238 comprises
any logic, business rules, function or operations for com-
pressing one or more protocols of a network packet, such as
any of the protocols used by the network stack 267 of the
device 200. In one embodiment, multi-protocol compression
engine 238 compresses bi-directionally between clients
102a-1027 and servers 106a-106n any TCP/IP based pro-
tocol, including Messaging Application Programming Inter-
face (MAPI) (email), File Transfer Protocol (FTP), Hyper-
Text Transfer Protocol (HTTP), Common Internet File
System (CIFS) protocol (file transfer), Independent Com-
puting Architecture (ICA) protocol, Remote Desktop Pro-
tocol (RDP), Wireless Application Protocol (WAP), Mobile
IP protocol, and Voice Over IP (VoIP) protocol. In other
embodiments, multi-protocol compression engine 238 pro-
vides compression of Hypertext Markup Language (HTML)
based protocols and in some embodiments, provides com-
pression of any markup languages, such as the Extensible
Markup Language (XML). In one embodiment, the multi-
protocol compression engine 238 provides compression of
any high-performance protocol, such as any protocol
designed for appliance 200 to appliance 200 communica-
tions. In another embodiment, the multi-protocol compres-
sion engine 238 compresses any payload of or any commu-
nication using a modified transport control protocol, such as
Transaction TCP (T/TCP), TCP with selection acknowl-
edgements (TCP-SACK), TCP with large windows (TCP-
LW), a congestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238
accelerates performance for users accessing applications via
desktop clients, e.g., Microsoft Outlook and non-Web thin

US 9,450,837 B2

23

clients, such as any client launched by popular enterprise
applications like Oracle, SAP and Siebel, and even mobile
clients, such as the Pocket PC. In some embodiments, the
multi-protocol compression engine 238 by executing in the
kernel mode 204 and integrating with packet processing
engine 240 accessing the network stack 267 is able to
compress any of the protocols carried by the TCP/IP proto-
col, such as any application layer protocol.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level pro-
cessing of packets received and transmitted by appliance
200 via network ports 266. The high speed layer 2-7
integrated packet engine 240 may comprise a buffer for
queuing one or more network packets during processing,
such as for receipt of a network packet or transmission of a
network packer. Additionally, the high speed layer 2-7
integrated packet engine 240 is in communication with one
or more network stacks 267 to send and receive network
packets via network ports 266. The high speed layer 2-7
integrated packet engine 240 works in conjunction with
encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression logic 238. In particular,
encryption engine 234 is configured to perform SSL pro-
cessing of packets, policy engine 236 is configured to
perform functions related to traffic management such as
request-level content switching and request-level cache redi-
rection, and multi-protocol compression logic 238 is con-
figured to perform functions related to compression and
decompression of data.

The high speed layer 2-7 integrated packet engine 240
includes a packet processing timer 242. In one embodiment,
the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.e., received,
or outgoing, i.e., transmitted, network packets. In some
embodiments, the high speed layer 2-7 integrated packet
engine 240 processes network packets responsive to the
timer 242. The packet processing timer 242 provides any
type and form of signal to the packet engine 240 to notify,
trigger, or communicate a time related event, interval or
occurrence. In many embodiments, the packet processing
timer 242 operates in the order of milliseconds, such as for
example 100 ms, 50 ms or 25 ms. For example, in some
embodiments, the packet processing timer 242 provides time
intervals or otherwise causes a network packet to be pro-
cessed by the high speed layer 2-7 integrated packet engine
240 at a 10 ms time interval, while in other embodiments, at
a 5 ms time interval, and still yet in further embodiments, as
short as a 3, 2, or 1 ms time interval. The high speed layer
2-7 integrated packet engine 240 may be interfaced, inte-
grated or in communication with the encryption engine 234,
cache manager 232, policy engine 236 and multi-protocol
compression engine 238 during operation. As such, any of
the logic, functions, or operations of the encryption engine
234, cache manager 232, policy engine 236 and multi-
protocol compression logic 238 may be performed respon-
sive to the packet processing timer 242 and/or the packet
engine 240. Therefore, any of the logic, functions, or opera-
tions of the encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238
may be performed at the granularity of time intervals
provided via the packet processing timer 242, for example,
at atime interval of less than or equal to 10 ms. For example,
in one embodiment, the cache manager 232 may perform
invalidation of any cached objects responsive to the high
speed layer 2-7 integrated packet engine 240 and/or the
packet processing timer 242. In another embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

24

expiry or invalidation time of a cached object can be set to
the same order of granularity as the time interval of the
packet processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG. 2, user space 202 of appliance
200 includes a graphical user interface (GUI) 210, a com-
mand line interface (CLI) 212, shell services 214, health
monitoring program 216, and daemon services 218. GUI
210 and CLI 212 provide a means by which a system
administrator or other user can interact with and control the
operation of appliance 200, such as via the operating system
of the appliance 200 and either is user space 202 or kernel
space 204. The GUI 210 may be any type and form of
graphical user interface and may be presented via text,
graphical or otherwise, by any type of program or applica-
tion, such as a browser. The CLI 212 may be any type and
form of command line or text-based interface, such as a
command line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool
to enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tesh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc-
tions to support interaction with the appliance 200 or oper-
ating system by a user via the GUI 210 and/or CLI 212.

Health monitoring program 216 is used to monitor, check,
report and ensure that network systems are functioning
properly and that users are receiving requested content over
a network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance
200. In other embodiments, the health monitoring program
216 interfaces by any suitable means and/or mechanisms
with one or more of the following: the encryption engine
234, cache manager 232, policy engine 236, multi-protocol
compression logic 238, packet engine 240, daemon services
218, and shell services 214. As such, the health monitoring
program 216 may call any application programming inter-
face (API) to determine a state, status, or health of any
portion of the appliance 200. For example, the health
monitoring program 216 may ping or send a status inquiry
on a periodic basis to check if a program, process, service or
task is active and currently running. In another example, the
health monitoring program 216 may check any status, error
or history logs provided by any program, process, service or
task to determine any condition, status or error with any
portion of the appliance 200.

Daemon services 218 are programs that run continuously
or in the background and handle periodic service requests
received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or
processes, such as another daemon service 218 as appropri-
ate. As known to those skilled in the art, a daemon service
218 may run unattended to perform continuous or periodic
system wide functions, such as network control, or to
perform any desired task. In some embodiments, one or
more daemon services 218 run in the user space 202, while
in other embodiments, one or more daemon services 218 run
in the kernel space.

US 9,450,837 B2

25

Referring now to FIG. 2B, another embodiment of the
appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, func-
tionality or operations: SSL. VPN connectivity 280, switch-
ing/load balancing 284, Domain Name Service resolution
286, acceleration 288 and an application firewall 290 for
communications between one or more clients 102 and one or
more servers 106. Each of the servers 106 may provide one
or more network related services 270a-270r (referred to as
services 270). For example, a server 106 may provide an http
service 270. The appliance 200 comprises one or more
virtual servers or virtual internet protocol servers, referred to
as a vServer, VIP server, or just VIP 2754-275n (also
referred herein as vServer 275). The vServer 275 receives,
intercepts or otherwise processes communications between
a client 102 and a server 106 in accordance with the
configuration and operations of the appliance 200.

The vServer 275 may comprise software, hardware or any
combination of software and hardware. The vServer 275
may comprise any type and form of program, service, task,
process or executable instructions operating in user mode
202, kernel mode 204 or any combination thereof in the
appliance 200. The vServer 275 includes any logic, func-
tions, rules, or operations to perform any embodiments of
the techniques described herein, such as SSL. VPN 280,
switching/load balancing 284, Domain Name Service reso-
Iution 286, acceleration 288 and an application firewall 290.
In some embodiments, the vServer 275 establishes a con-
nection to a service 270 of a server 106. The service 275 may
comprise any program, application, process, task or set of
executable instructions capable of connecting to and com-
municating to the appliance 200, client 102 or vServer 275.
For example, the service 275 may comprise a web server,
http server, ftp, email or database server. In some embodi-
ments, the service 270 is a daemon process or network driver
for listening, receiving and/or sending communications for
an application, such as email, database or an enterprise
application. In some embodiments, the service 270 may
communicate on a specific IP address, or IP address and port.

In some embodiments, the vServer 275 applies one or
more policies of the policy engine 236 to network commu-
nications between the client 102 and server 106. In one
embodiment, the policies are associated with a VServer 275.
In another embodiment, the policies are based on a user, or
a group of users. In yet another embodiment, a policy is
global and applies to one or more vServers 275a-275n, and
any user or group of users communicating via the appliance
200. In some embodiments, the policies of the policy engine
have conditions upon which the policy is applied based on
any content of the communication, such as internet protocol
address, port, protocol type, header or fields in a packet, or
the context of the communication, such as user, group of the
user, vServer 275, transport layer connection, and/or iden-
tification or attributes of the client 102 or server 106.

In other embodiments, the appliance 200 communicates
or interfaces with the policy engine 236 to determine authen-
tication and/or authorization of a remote user or a remote
client 102 to access the computing environment 15, appli-
cation, and/or data file from a server 106. In another embodi-
ment, the appliance 200 communicates or interfaces with the
policy engine 236 to determine authentication and/or autho-
rization of a remote user or a remote client 102 to have the
application delivery system 190 deliver one or more of the
computing environment 15, application, and/or data file. In
yet another embodiment, the appliance 200 establishes a
VPN or SSL VPN connection based on the policy engine’s
236 authentication and/or authorization of a remote user or

10

15

20

25

30

35

40

45

50

55

60

65

26

a remote client 103 In one embodiment, the appliance 102
controls the flow of network traffic and communication
sessions based on policies of the policy engine 236. For
example, the appliance 200 may control the access to a
computing environment 15, application or data file based on
the policy engine 236.

In some embodiments, the vServer 275 establishes a
transport layer connection, such as a TCP or UDP connec-
tion with a client 102 via the client agent 120. In one
embodiment, the vServer 275 listens for and receives com-
munications from the client 102. In other embodiments, the
vServer 275 establishes a transport layer connection, such as
a TCP or UDP connection with a client server 106. In one
embodiment, the vServer 275 establishes the transport layer
connection to an internet protocol address and port of a
server 270 running on the server 106. In another embodi-
ment, the vServer 275 associates a first transport layer
connection to a client 102 with a second transport layer
connection to the server 106. In some embodiments, a
vServer 275 establishes a pool of transport layer connections
to a server 106 and multiplexes client requests via the pooled
transport layer connections.

In some embodiments, the appliance 200 provides a SSL
VPN connection 280 between a client 102 and a server 106.
For example, a client 102 on a first network 102 requests to
establish a connection to a server 106 on a second network
104'. In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106
is on a private network 104', such as a corporate network. In
one embodiment, the client agent 120 intercepts communi-
cations of the client 102 on the first network 104, encrypts
the communications, and transmits the communications via
a first transport layer connection to the appliance 200. The
appliance 200 associates the first transport layer connection
on the first network 104 to a second transport layer connec-
tion to the server 106 on the second network 104. The
appliance 200 receives the intercepted communication from
the client agent 102, decrypts the communications, and
transmits the communication to the server 106 on the second
network 104 via the second transport layer connection. The
second transport layer connection may be a pooled transport
layer connection. As such, the appliance 200 provides an
end-to-end secure transport layer connection for the client
102 between the two networks 104, 104'.

In one embodiment, the appliance 200 hosts an intranet
internet protocol or intranetIP 282 address of the client 102
on the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address
and/or host name on the first network 104. When connected
to the second network 104' via the appliance 200, the
appliance 200 establishes, assigns or otherwise provides an
IntranetIP, which is network identifier, such as IP address
and/or host name, for the client 102 on the second network
104'. The appliance 200 listens for and receives on the
second or private network 104' for any communications
directed towards the client 102 using the client’s established
IntranetIP 282. In one embodiment, the appliance 200 acts
as or on behalf of the client 102 on the second private
network 104. For example, in another embodiment, a
vServer 275 listens for and responds to communications to
the IntranetIP 282 of the client 102. In some embodiments,
if a computing device 100 on the second network 104'
transmits a request, the appliance 200 processes the request
as if it were the client 102. For example, the appliance 200
may respond to a ping to the client’s IntranetIP 282. In
another example, the appliance may establish a connection,

US 9,450,837 B2

27

such as a TCP or UDP connection, with computing device
100 on the second network 104 requesting a connection with
the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or
more of the following acceleration techniques 288 to com-
munications between the client 102 and server 106: 1)
compression; 2) decompression; 3) Transmission Control
Protocol pooling; 4) Transmission Control Protocol multi-
plexing; 5) Transmission Control Protocol buffering; and 6)
caching. In one embodiment, the appliance 200 relieves
servers 106 of much of the processing load caused by
repeatedly opening and closing transport layers connections
to clients 102 by opening one or more transport layer
connections with each server 106 and maintaining these
connections to allow repeated data accesses by clients via
the Internet. This technique is referred to herein as “con-
nection pooling”.

In some embodiments, in order to seamlessly splice
communications from a client 102 to a server 106 via a
pooled transport layer connection, the appliance 200 trans-
lates or multiplexes communications by modifying sequence
number and acknowledgment numbers at the transport layer
protocol level. This is referred to as “connection multiplex-
ing”. In some embodiments, no application layer protocol
interaction is required. For example, in the case of an
in-bound packet (that is, a packet received from a client
102), the source network address of the packet is changed to
that of an output port of appliance 200, and the destination
network address is changed to that of the intended server. In
the case of an outbound packet (that is, one received from a
server 106), the source network address is changed from that
of the server 106 to that of an output port of appliance 200
and the destination address is changed from that of appliance
200 to that of the requesting client 102. The sequence
numbers and acknowledgment numbers of the packet are
also translated to sequence numbers and acknowledgement
expected by the client 102 on the appliance’s 200 transport
layer connection to the client 102. In some embodiments, the
packet checksum of the transport layer protocol is recalcu-
lated to account for these translations.

In another embodiment, the appliance 200 provides
switching or load-balancing functionality 284 for commu-
nications between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and
directs client requests to a server 106 based on layer 4 or
application-layer request data. In one embodiment, although
the network layer or layer 2 of the network packet identifies
a destination server 106, the appliance 200 determines the
server 106 to distribute the network packet by application
information and data carried as payload of the transport
layer packet. In one embodiment, the health monitoring
programs 216 of the appliance 200 monitor the health of
servers to determine the server 106 for which to distribute a
client’s request. In some embodiments, if the appliance 200
detects a server 106 is not available or has a load over a
predetermined threshold, the appliance 200 can direct or
distribute client requests to another server 106.

In some embodiments, the appliance 200 acts as a Domain
Name Service (DNS) resolver or otherwise provides reso-
Iution of a DNS request from clients 102. In some embodi-
ments, the appliance intercepts’ a DNS request transmitted
by the client 102. In one embodiment, the appliance 200
responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address

25

30

40

45

55

28

of or hosted by a second appliance 200'. In some embodi-
ments, the appliance 200 responds to a client’s DNS request
with an IP address of a server 106 determined by the
appliance 200.

In yet another embodiment, the appliance 200 provides
application firewall functionality 290 for communications
between the client 102 and server 106. In one embodiment,
the policy engine 236 provides rules for detecting and
blocking illegitimate requests. In some embodiments, the
application firewall 290 protects against denial of service
(DoS) attacks. In other embodiments, the appliance inspects
the content of intercepted requests to identify and block
application-based attacks. In some embodiments, the rules/
policy engine 236 comprises one or more application fire-
wall or security control policies for providing protections
against various classes and types of web or Internet based
vulnerabilities, such as one or more of the following: 1)
buffer overflow, 2) CGI-BIN parameter manipulation, 3)
form/hidden field manipulation, 4) forceful browsing, 5)
cookie or session poisoning, 6) broken access control list
(ACLs) or weak passwords, 7) cross-site scripting (XSS), 8)
command injection, 9) SQL injection, 10) error triggering
sensitive information leak, 11) insecure use of cryptography,
12) server misconfiguration, 13) back doors and debug
options, 14) website defacement, 15) platform or operating
systems vulnerabilities, and 16) zero-day exploits. In an
embodiment, the application firewall 290 provides HTML
form field protection in the form of inspecting or analyzing
the network communication for one or more of the follow-
ing: 1) required fields are returned, 2) no added field
allowed, 3) read-only and hidden field enforcement, 4)
drop-down list and radio button field conformance, and 5)
form-field max-length enforcement. In some embodiments,
the application firewall 290 ensures cookies are not modi-
fied. In other embodiments, the application firewall 290
protects against forceful browsing by enforcing legal URLs.

In still yet other embodiments, the application firewall
290 protects any confidential information contained in the
network communication. The application firewall 290 may
inspect or analyze any network communication in accor-
dance with the rules or polices of the engine 236 to identify
any confidential information in any field of the network
packet. In some embodiments, the application firewall 290
identifies in the network communication one or more occur-
rences of a credit card number, password, social security
number, name, patient code, contact information, and age.
The encoded portion of the network communication may
comprise these occurrences or the confidential information.
Based on these occurrences, in one embodiment, the appli-
cation firewall 290 may take a policy action on the network
communication, such as prevent transmission of the network
communication. In another embodiment, the application
firewall 290 may rewrite, remove or otherwise mask such
identified occurrence or confidential information.

Still referring to FIG. 2B, the appliance 200 may include
a performance monitoring agent 197 as discussed above in
conjunction with FIG. 1D. In one embodiment, the appli-
ance 200 receives the monitoring agent 197 from the moni-
toring service 1908 or monitoring server 106 as depicted in
FIG. 1D. In some embodiments, the appliance 200 stores the
monitoring agent 197 in storage, such as disk, for delivery
to any client or server in communication with the appliance
200. For example, in one embodiment, the appliance 200
transmits the monitoring agent 197 to a client upon receiving
a request to establish a transport layer connection. In other
embodiments, the appliance 200 transmits the monitoring
agent 197 upon establishing the transport layer connection

US 9,450,837 B2

29

with the client 102. In another embodiment, the appliance
200 transmits the monitoring agent 197 to the client upon
intercepting or detecting a request for a web page. In yet
another embodiment, the appliance 200 transmits the moni-
toring agent 197 to a client or a server in response to a
request from the monitoring server 198. In one embodiment,
the appliance 200 transmits the monitoring agent 197 to a
second appliance 200" or appliance 205.

In other embodiments, the appliance 200 executes the
monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut-
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor-
ing agent 197 measures and monitors the performance of
any transport layer connections of the appliance 200. In
some embodiments, the monitoring agent 197 measures and
monitors the performance of any user sessions traversing the
appliance 200. In one embodiment, the monitoring agent
197 measures and monitors the performance of any virtual
private network connections and/or sessions traversing the
appliance 200, such an SSIL VPN session. In still further
embodiments, the monitoring agent 197 measures and moni-
tors the memory, CPU and disk usage and performance of
the appliance 200. In yet another embodiment, the monitor-
ing agent 197 measures and monitors the performance of
any acceleration technique 288 performed by the appliance
200, such as SSL offloading, connection pooling and mul-
tiplexing, caching, and compression. In some embodiments,
the monitoring agent 197 measures and monitors the per-
formance of any load balancing and/or content switching
284 performed by the appliance 200. In other embodiments,
the monitoring agent 197 measures and monitors the per-
formance of application firewall 290 protection and process-
ing performed by the appliance 200.

C. Client Agent

Referring now to FIG. 3, an embodiment of the client
agent 120 is depicted. The client 102 includes a client agent
120 for establishing and exchanging communications with
the appliance 200 and/or server 106 via a network 104. In
brief overview, the client 102 operates on computing device
100 having an operating system with a kernel mode 302 and
a user mode 303, and a network stack 310 with one or more
layers 310a-3105. The client 102 may have installed and/or
execute one or more applications. In some embodiments,
one or more applications may communicate via the network
stack 310 to a network 104. One of the applications, such as
a web browser, may also include a first program 322. For
example, the first program 322 may be used in some
embodiments to install and/or execute the client agent 120,
or any portion thereof. The client agent 120 includes an
interception mechanism, or interceptor 350, for intercepting
network communications from the network stack 310 from
the one or more applications.

The network stack 310 of the client 102 may comprise any
type and form of software, or hardware, or any combinations
thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310
comprises a software implementation for a network protocol
suite. The network stack 310 may comprise one or more
network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of
protocols for any of the following layers of the OSI model:
1) physical link layer, 2) data link layer, 3) network layer, 4)

10

15

20

25

30

35

40

45

50

55

60

30

transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), gener-
ally referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LAN) protocols, such as
those protocols covered by the IEEE 802.3. In some embodi-
ments, the network stack 310 comprises any type and form
of a wireless protocol, such as IEEE 802.11 and/or mobile
internet protocol.

In view of a TCP/IP based network, any TCP/IP based
protocol may be used, including Messaging Application
Programming Interface (MAPI) (email), File Transfer Pro-
tocol (FTP), HyperText Transfer Protocol (HTTP), Common
Internet File System (CIFS) protocol (file transfer), Inde-
pendent Computing Architecture (ICA) protocol, Remote
Desktop Protocol (RDP), Wireless Application Protocol
(WAP), Mobile IP protocol, and Voice Over IP (VoIP)
protocol. In another embodiment, the network stack 310
comprises any type and form of transport control protocol,
such as a modified transport control protocol, for example a
Transaction TCP (T/TCP), TCP with selection acknowl-
edgements (TCP-SACK), TCP with large windows (TCP-
LW), a congestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol. In other
embodiments, any type and form of user datagram protocol
(UDP), such as UDP over 1P, may be used by the network
stack 310, such as for voice communications or real-time
data communications.

Furthermore, the network stack 310 may include one or
more network drivers supporting the one or more layers,
such as a TCP driver or a network layer driver. The network
drivers may be included as part of the operating system of
the computing device 100 or as part of any network interface
cards or other network access components of the computing
device 100. In some embodiments, any of the network
drivers of the network stack 310 may be customized, modi-
fied or adapted to provide a custom or modified portion of
the network stack 310 in support of any of the techniques
described herein. In other embodiments, the acceleration
program 120 is designed and constructed to operate with or
work in conjunction with the network stack 310 installed or
otherwise provided by the operating system of the client
102.

The network stack 310 comprises any type and form of
interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network
communications of the client 102. In one embodiment, an
interface to the network stack 310 comprises an application
programming interface (API). The interface may also com-
prise any function call, hooking or filtering mechanism,
event or call back mechanism, or any type of interfacing
technique. The network stack 310 via the interface may
receive or provide any type and form of data structure, such
as an object, related to functionality or operation of the
network stack 310. For example, the data structure may
comprise information and data related to a network packet or
one or more network packets. In some embodiments, the
data structure comprises a portion of the network packet
processed at a protocol layer of the network stack 310, such
as a network packet of the transport layer. In some embodi-
ments, the data structure 325 comprises a kernel-level data
structure, while in other embodiments, the data structure 325
comprises a user-mode data structure. A kernel-level data
structure may comprise a data structure obtained or related

US 9,450,837 B2

31

to a portion of the network stack 310 operating in kernel-
mode 302, or a network driver or other software running in
kernel-mode 302, or any data structure obtained or received
by a service, process, task, thread or other executable
instructions running or operating in kernel-mode of the
operating system.

Additionally, some portions of the network stack 310 may
execute or operate in kernel-mode 302, for example, the data
link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the
network stack 310. For example, a first portion 310a of the
network stack may provide user-mode access to the network
stack 310 to an application while a second portion 310a of
the network stack 310 provides access to a network. In some
embodiments, a first portion 310a of the network stack may
comprise one or more upper layers of the network stack 310,
such as any of layers 5-7. In other embodiments, a second
portion 3106 of the network stack 310 comprises one or
more lower layers, such as any of layers 1-4. Each of the first
portion 310a and second portion 3105 of the network stack
310 may comprise any portion of the network stack 310, at
any one or more network layers, in user-mode 203, kernel-
mode, 202, or combinations thereof, or at any portion of a
network layer or interface point to a network layer or any
portion of or interface point to the user-mode 203 and
kernel-mode 203.

The interceptor 350 may comprise software, hardware, or
any combination of software and hardware. In one embodi-
ment, the interceptor 350 intercept a network communica-
tion at any point in the network stack 310, and redirects or
transmits the network communication to a destination
desired, managed or controlled by the interceptor 350 or
client agent 120. For example, the interceptor 350 may
intercept a network communication of a network stack 310
of a first network and transmit the network communication
to the appliance 200 for transmission on a second network
104. In some embodiments, the interceptor 350 comprises
any type interceptor 350 comprises a driver, such as a
network driver constructed and designed to interface and
work with the network stack 310. In some embodiments, the
client agent 120 and/or interceptor 350 operates at one or
more layers of the network stack 310, such as at the transport
layer. In one embodiment, the interceptor 350 comprises a
filter driver, hooking mechanism, or any form and type of
suitable network driver interface that interfaces to the trans-
port layer of the network stack, such as via the transport
driver interface (TDI). In some embodiments, the interceptor
350 interfaces to a first protocol layer, such as the transport
layer and another protocol layer, such as any layer above the
transport protocol layer, for example, an application proto-
col layer. In one embodiment, the interceptor 350 may
comprise a driver complying with the Network Driver
Interface Specification (NDIS), or a NDIS driver. In another
embodiment, the interceptor 350 may comprise a min-filter
or a mini-port driver. In one embodiment, the interceptor
350, or portion thereof, operates in kernel-mode 202. In
another embodiment, the interceptor 350, or portion thereof,
operates in user-mode 203. In some embodiments, a portion
of the interceptor 350 operates in kernel-mode 202 while
another portion of the interceptor 350 operates in user-mode
203. In other embodiments, the client agent 120 operates in
user-mode 203 but interfaces via the interceptor 350 to a
kernel-mode driver, process, service, task or portion of the
operating system, such as to obtain a kernel-level data
structure 225. In further embodiments, the interceptor 350 is
a user-mode application or program, such as application.

30

40

45

32

In one embodiment, the interceptor 350 intercepts any
transport layer connection requests. In these embodiments,
the interceptor 350 execute transport layer application pro-
gramming interface (API) calls to set the destination infor-
mation, such as destination IP address and/or port to a
desired location for the location. In this manner, the inter-
ceptor 350 intercepts and redirects the transport layer con-
nection to a IP address and port controlled or managed by the
interceptor 350 or client agent 120. In one embodiment, the
interceptor 350 sets the destination information for the
connection to a local IP address and port of the client 102 on
which the client agent 120 is listening. For example, the
client agent 120 may comprise a proxy service listening on
a local IP address and port for redirected transport layer
communications. In some embodiments, the client agent 120
then communicates the redirected transport layer communi-
cation to the appliance 200.

In some embodiments, the interceptor 350 intercepts a
Domain Name Service (DNS) request. In one embodiment,
the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits
the intercepted DNS request to the appliance 200 for DNS
resolution. In one embodiment, the appliance 200 resolves
the DNS request and communicates the DNS response to the
client agent 120. In some embodiments, the appliance 200
resolves the DNS request via another appliance 200' or a
DNS server 106.

In yet another embodiment, the client agent 120 may
comprise two agents 120 and 120'. In one embodiment, a
first agent 120 may comprise an interceptor 350 operating at
the network layer of the network stack 310. In some embodi-
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120"

The client agent 120 and/or interceptor 350 may operate
at or interface with a protocol layer in a manner transparent
to any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or
interfaces with the transport layer of the network stack 310
transparently to any protocol layer below the transport layer,
such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or applica-
tion layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the
client agent 120 and/or interceptor 350 can interface with the
transport layer to secure, optimize, accelerate, route or
load-balance any communications provided via any protocol
carried by the transport layer, such as any application layer
protocol over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may
operate at or interface with the network stack 310 in a
manner transparent to any application, a user of the client
102, and any other computing device, such as a server, in
communications with the client 102. The client agent 120
and/or interceptor 350 may be installed and/or executed on
the client 102 in a manner without modification of an
application. In some embodiments, the user of the client 102
or a computing device in communications with the client
102 are not aware of the existence, execution or operation of
the client agent 120 and/or interceptor 350. As such, in some
embodiments, the client agent 120 and/or interceptor 350 is

US 9,450,837 B2

33

installed, executed, and/or operated transparently to an
application, user of the client 102, another computing
device, such as a server, or any of the protocol layers above
and/or below the protocol layer interfaced to by the inter-
ceptor 350.

The client agent 120 includes an acceleration program
302, a streaming client 306, a collection agent 304, and/or
monitoring agent 197. In one embodiment, the client agent
120 comprises an Independent Computing Architecture
(ICA) client, or any portion thereof, developed by Citrix
Systems, Inc. of Fort Lauderdale, Fla., and is also referred
to as an ICA client. In some embodiments, the client 120
comprises an application streaming client 306 for streaming
an application from a server 106 to a client 102. In some
embodiments, the client agent 120 comprises an acceleration
program 302 for accelerating communications between cli-
ent 102 and server 106. In another embodiment, the client
agent 120 includes a collection agent 304 for performing
end-point detection/scanning and collecting end-point infor-
mation for the appliance 200 and/or server 106.

In some embodiments, the acceleration program 302
comprises a client-side acceleration program for performing
one or more acceleration techniques to accelerate, enhance
or otherwise improve a client’s communications with and/or
access to a server 106, such as accessing an application
provided by a server 106. The logic, functions, and/or
operations of the executable instructions of the acceleration
program 302 may perform one or more of the following
acceleration techniques: 1) multi-protocol compression, 2)
transport control protocol pooling, 3) transport control pro-
tocol multiplexing, 4) transport control protocol buffering,
and 5) caching via a cache manager. Additionally, the
acceleration program 302 may perform encryption and/or
decryption of any communications received and/or trans-
mitted by the client 102. In some embodiments, the accel-
eration program 302 performs one or more of the accelera-
tion techniques in an integrated manner or fashion.
Additionally, the acceleration program 302 can perform
compression on any of the protocols, or multiple-protocols,
carried as a payload of a network packet of the transport
layer protocol. The streaming client 306 comprises an appli-
cation, program, process, service, task or executable instruc-
tions for receiving and executing a streamed application
from a server 106. A server 106 may stream one or more
application data files to the streaming client 306 for playing,
executing or otherwise causing to be executed the applica-
tion on the client 102. In some embodiments, the server 106
transmits a set of compressed or packaged application data
files to the streaming client 306. In some embodiments, the
plurality of application files are compressed and stored on a
file server within an archive file such as a CAB, ZIP, SIT,
TAR, JAR or other archive. In one embodiment, the server
106 decompresses, unpackages or unarchives the application
files and transmits the files to the client 102. In another
embodiment, the client 102 decompresses, unpackages or
unarchives the application files. The streaming client 306
dynamically installs the application, or portion thereof, and
executes the application. In one embodiment, the streaming
client 306 may be an executable program. In some embodi-
ments, the streaming client 306 may be able to launch
another executable program.

The collection agent 304 comprises an application, pro-
gram, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about
the client 102. In some embodiments, the appliance 200
transmits the collection agent 304 to the client 102 or client
agent 120. The collection agent 304 may be configured

10

15

20

25

30

35

40

45

50

55

60

65

34

according to one or more policies of the policy engine 236
of the appliance. In other embodiments, the collection agent
304 transmits collected information on the client 102 to the
appliance 200. In one embodiment, the policy engine 236 of
the appliance 200 uses the collected information to deter-
mine and provide access, authentication and authorization
control of the client’s connection to a network 104.

In one embodiment, the collection agent 304 comprises an
end-point detection and scanning mechanism, which iden-
tifies and determines one or more attributes or characteristics
of the client. For example, the collection agent 304 may
identify and determine any one or more of the following
client-side attributes: 1) the operating system an/or a version
of an operating system, 2) a service pack of the operating
system, 3) a running service, 4) a running process, and 5) a
file. The collection agent 304 may also identify and deter-
mine the presence or versions of any one or more of the
following on the client: 1) antivirus software, 2) personal
firewall software, 3) anti-spam software, and 4) internet
security software. The policy engine 236 may have one or
more policies based on any one or more of the attributes or
characteristics of the client or client-side attributes.

In some embodiments, the client agent 120 includes a
monitoring agent 197 as discussed in conjunction with
FIGS. 1D and 2B. The monitoring agent 197 may be any
type and form of script, such as Visual Basic or Java script.
In one embodiment, the monitoring agent 129 monitors and
measures performance of any portion of the client agent 120.
For example, in some embodiments, the monitoring agent
129 monitors and measures performance of the acceleration
program 302. In another embodiment, the monitoring agent
129 monitors and measures performance of the streaming
client 306. In other embodiments, the monitoring agent 129
monitors and measures performance of the collection agent
304. In still another embodiment, the monitoring agent 129
monitors and measures performance of the interceptor 350.
In some embodiments, the monitoring agent 129 monitors
and measures any resource of the client 102, such as
memory, CPU and disk.

The monitoring agent 197 may monitor and measure
performance of any application of the client. In one embodi-
ment, the monitoring agent 129 monitors and measures
performance of a browser on the client 102. In some
embodiments, the monitoring agent 197 monitors and mea-
sures performance of any application delivered via the client
agent 120. In other embodiments, the monitoring agent 197
measures and monitors end user response times for an
application, such as web-based or HTTP response times. The
monitoring agent 197 may monitor and measure perfor-
mance of an ICA or RDP client. In another embodiment, the
monitoring agent 197 measures and monitors metrics for a
user session or application session. In some embodiments,
monitoring agent 197 measures and monitors an ICA or
RDP session. In one embodiment, the monitoring agent 197
measures and monitors the performance of the appliance 200
in accelerating delivery of an application and/or data to the
client 102.

In some embodiments and still referring to FIG. 3, a first
program 322 may be used to install and/or execute the client
agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one
embodiment, the first program 322 comprises a plugin
component, such an ActiveX control or Java control or script
that is loaded into and executed by an application. For
example, the first program comprises an ActiveX control
loaded and run by a web browser application, such as in the
memory space or context of the application. In another

US 9,450,837 B2

35

embodiment, the first program 322 comprises a set of
executable instructions loaded into and run by the applica-
tion, such as a browser. In one embodiment, the first
program 322 comprises a designed and constructed program
to install the client agent 120. In some embodiments, the first
program 322 obtains, downloads, or receives the client agent
120 via the network from another computing device. In
another embodiment, the first program 322 is an installer
program or a plug and play manager for installing programs,
such as network drivers, on the operating system of the
client 102.

D. Systems and Methods for Configuring and Using Object-
Oriented Policy Expressions

Referring now to FIG. 4A, an example of a portion of an
object model used to facilitate processing of HTTP data is
shown. In brief overview, object classes are defined for a
number of elements in the HTTP protocol. Defined classes
include a request 405, response 410, hostname 415, url 420,
query 425, cookie 430, and text 435. Each class is defined
to include a number of fields and/or methods, which may
include or return objects corresponding to other classes or
may include or return other data types, such as integers.

Still referring to FIG. 4A, now in greater detail, an object
model may comprise a set of defined object classes which
allows a computing device to specify and manipulate data,
and/or a set of defined object classes which allows a user of
a computing device to direct the operations of the computing
device. An object model may have any properties associated
with object-oriented design or programming including,
without limitation, inheritance, abstraction, encapsulation,
and polymorphism. Examples of object models that may be
used in conjunction with the object-oriented expressions
described herein include, without limitation, the Java object
model, the Component Object Model (COM), and the
HTML Document Object Model (DOM), and any portion or
combinations of portions of those models. In some embodi-
ments, an object model or a portion of an object model may
correspond to a protocol. For example, an object model may
be created to represent HTTP communications, with the
object model providing classes and methods for accessing
and manipulating HTTP communications. Or an object
model may be created to represent TCP, IP, UDP, ICA, or
SSL communications. Or an object model may be created to
represent an appliance, with the object model providing
classes and methods for accessing and manipulating state
information relating to an network appliance 200.

An object class may comprise an abstract description of
an object and any methods associated with the object. An
object, a particular instance of a class, may represent any
type or form of data, process, or protocol. Example objects
may include, without limitation, strings, text, numbers, lists,
protocols, data streams, connections, devices, data struc-
tures, systems, and network packets.

An object class may have a number of members. A
member of an object class may comprise any field, method,
constructor, property, or variable specified by the object
class. In some embodiments, a member of an object class
may comprise an object of a second object class. For
example, in the embodiment shown, the object class
“http_request” 405 contains a method “getUrl” which
returns a url object. In other embodiments, a member of an
object class may be a primitive data type of an underlying
architecture, such as an integer, floating point number, byte,
array, or boolean variable. For example, the class “cookie”
contains a field “count” which is an integer identifying the
number of name-value pairs in the list. In still other embodi-

10

15

20

25

30

35

40

45

50

55

60

65

36

ments, a member of an object class may comprise a constant.
In still other embodiments, a member of an object class may
comprise a method.

In some cases, a member of an object class may be defined
in the object class definition. In other cases, a member of an
object class may be defined in a parent class of the object
class. In still other cases, a member of an object class may
be defined in a parent of the object class and modified in the
class definition for the object. For example, both the
“cookie” 430 and “query” 425 classes inherit the methods
“getName” and “getValue” from their parent class “list_nv”
which is a class representing lists of name-value pairs.

In the embodiment shown, the http_request class 405
contains a number of methods which may be used to process
an HTTP request. Fields and methods me be provided to
identify and manipulate any portion or portions of an HTTP
request including, without limitation, the URL, cookie,
body, content-type, date, version, and hostname. In one
embodiment, a method or methods may be provided to
determine whether a given data stream is a validly formatted
HTTP request. A similar class and/or methods may also be
provided for an HTTP response.

The url class 420 shown may comprise any number of
fields and methods for operating and identifying a url. In one
embodiment, the url may contain methods for parsing one or
more of a hostname, port, server, domain, file suffix, path,
and query. In one embodiment, the url may be a subclass of
a general text object, which may allow the url to be treated
as unformatted text. For example, the url class 420 may be
a subclass of the text class 435. In one embodiment, the url
class may comprise methods for rewriting all or a portion of
the url. In some embodiments, the url class may be applied
to any portion of text. For example, the url class may
comprise a constructor which accepts a string of text and
creates a url object by parsing the string. In these and other
embodiments, the url class may comprise a method for
indicating whether a URL is a properly formatted URL. In
some embodiments, a URL class may comprise a method for
identifying one or more URLSs in a text string. For example,
a static method “findURL” might be provided which returns
a list of validly formatted URLs in a given text sequence.
This method could be used, for example, to find a number of
URLSs contained in the body of an HTTP response. The url
class may then provide methods for modifying one or more
of the found URLs.

The cookie class 430 may comprise any number of fields
and methods for identifying and processing a cookie. In one
embodiment, the cookie may be an HTTP cookie. In the
embodiment shown, the cookie class represents a cookie as
a list of name value pairs. The “getValue” method, in
response to receiving a number n, may return a text object
of the nth value in the list. The getName method, in response
to receiving a number n, may return a text object of the nth
value in the name. In other embodiments, a cookie may be
represented using any other syntax or data type including,
without limitation, a string, or linked list. In some embodi-
ments, the cookie class may provide a method for inserting
and/or altering a cookie. In other embodiments, a HTTP
response or request object class may provide a method for
inserting or modifying a cookie contained in a request or
response.

The “text” class 435 shown may comprise any number of
fields and/or methods for operating on a text sequence. A
text sequence may comprise any sequence of bytes capable
of being treated as characters. In some embodiments, a text
object may comprise a discrete sequence of bytes. In other
embodiments, a text object may comprise one or more bytes

US 9,450,837 B2

37

of'a byte stream. In these embodiments, a text object may be
used to operate on portions of the byte stream even if the
entire stream has not been received. Methods that may be
used in conjunction with text objects may include, without
limitation, comparisons, truncations, searches, sorts, and
regular expression matching and searching. For example, a
method may be provided to determine whether a given
substring is found within a text object. Or for example, a
method may be provided to determine a portion of a text
object preceding a special character. Or, for example, a
method may be provided for identifying a sequence of text
following a given regular expression.

In some embodiments, methods may also be provided for
formatting or confirming formatting of text so that it can be
processed by other classes and/or methods. For example, a
method may be provided that ensures a text object may be
treated as XML. This method might check that the text
object conforms to proper XML formatting and does not
contain any malicious or inadvertent errors. Or, for example,
a similar method may be provided to determine whether a
text sequence can be treated as a URL. This method may, for
example, find and replace any characters which need to be
replaced by escape sequences so that the text object con-
forms to proper URL formatting conventions.

An object model may be implemented using any physical
data structures or other underlying physical implementa-
tions. In some embodiments, a number of objects may
access the same object in physical memory to perform the
methods associated with each object. In one embodiment,
the object model shown may be implemented so that a
plurality of object instances operate on a underlying data
stream, without needing to produce separate copies of the
data stream for each object instance. To give a detailed
example, with respect to the object model shown, an appli-
ance may receive an HTTP communication from a client and
store it in memory. The appliance may then execute identity
a http_request object, and then call functions in the http_re-
quest object class 305 to obtain a url and/or a cookie object.
The appliance may then call addition functions or reference
fields in the url and cookie objects. Some or all of these
methods may operate by parsing some or all of the under-
lying data stream, and then returning references to portions
of the stream. For example, a url object may store the
beginning and ending memory locations of the url in the
underlying data stream. Each method of the url class may
then parse and/or modify portions of data within the iden-
tified memory locations. In this manner, the appliance may
be able to process a data stream using an object model
without having to maintain additional copies of data in the
data stream.

In other implementations, one or more additional copies
of some or all of a data stream may be made with respect to
some objects. These object may perform operations on a
copy of a portion of data stream, and, as may be appropriate,
update the data stream with any changes made to the copy.

The object model shown and others may specify object
classes and data structures that can be applied to any input
stream. For example, the object model shown may be used
to treat any input stream as an http_request object, and then
utilize any of the functionality provided by the http_request
object class. Further, although the object model shown
relates to HTTP data, other object models may be used to
provide functionality with respect to TCP, SSL, or ICA
streams. In some embodiments, an object model and imple-
mentation may be provided such that an appliance may
select from a number of object models to process a given
data stream. For example, upon receiving a given data

5

10

15

20

25

30

40

45

50

55

60

65

38

stream, an appliance may determine that the data stream is
an ICA stream, and apply an appropriate object model for
processing the ICA stream. However, if HTTP data is
transmitted within the ICA stream, the appliance may also
apply an HTTP object model, such as the one shown, for
processing the HT'TP data. In this way, an appliance may
specify any structure or structures to apply to a received byte
stream.

Referring now to FIG. 4B, an example documentation
screen for an object class representing a URL is shown. In
brief overview, the documentation screen comprises a partial
list of a number of methods and a constructor for the
“http_url_t” class, which represents a URL. The documen-
tation screen indicates a number of methods are imple-
mented in the “http_url_t” class, and a number of methods
implemented in the parent class “text_t.” These classes may
correspond to the “url” and “text” classes described with
respect to FIG. 4A.

Referring now to FIG. 4C, a number of example object-
oriented expressions for use in a policy engine are shown. In
brief overview, an object oriented expression 400 contains a
number of object classes, which may correspond to proto-
cols, protocol objects, data structures, and data types. An
object-oriented expression may specify a member of an
identified object, which may comprise methods, data types,
or other object classes. A number of example object-oriented
expressions 400a, 4005, 400c are shown. These object
oriented expressions may be used by a network device in
performing any function including, without limitation, ana-
lyzing traffic flows, identifying system properties, load bal-
ancing, content switching, and application security.

Still referring to FIG. 4C, now in greater detail, object-
oriented expressions may comprise any expression which
allows the specification of data and functions with respect to
an object model. A first example object oriented expression
400 identifies an object class and a member of the object
class. In the syntax of the object-oriented expressions
shown, a member of an object is designated by a period
following the object and then a string naming the member of
the object. For example, HTTP.REQ identifies the member
method named “REQ” for the HTTP object. In this example,
method names may be denoted with all uppercase. In other
embodiments, any other syntax may be used to specify
object-oriented expressions. Examples of syntaxes that may
be used include, without limitation, the syntax or a combi-
nation of syntaxes of ActionScript, Java, JavaScript, C#,
Visual FoxPro, VB.Net, C++, Python, Perl, PHP, Ruby
and/or Objective-C.

In the example object-oriented expression 400q, the
expression identifies the protocol HTTP. In one embodi-
ment, HT'TP may correspond to an object class, an abstract
object class, a static object class, or any other component of
an object model. In some embodiments, HTTP may be a
parent class of a number of object classes used to represent
and process HTTP communications. In other embodiments,
“HTTP” may be a static class or method comprising one or
more objects and/or methods relating to the representation
and processing of HI'TP communications. For example, the
expression “HTTP.REQ” may return an object correspond-
ing to an HTTP request within a data stream. In one
embodiment, this object may be an instance of an object
class such as the “http_request” class discussed in FIG. 4A.
In the embodiment shown, the expression 400a may return
a boolean value indicating whether “joe” is contained in a
value named “id” in the query portion of a URL of an HTTP
request.

US 9,450,837 B2

39

The example object-oriented expression 4005 provides an
example of explicit typecasting, which may be used to
specify structure with respect to arbitrary portions of a data
stream. In the example, the string returned from a HTTP
request header item corresponding to eh Accept-Language is
explicitly typecast into a list. The TYPECAST_TO_LIST
method accepts as an argument the list delimiter, and returns
a list based on the delimiter. The expression then identifies
a CONTAINS method to determine whether one of the list
elements is “en”. This example 4006 may be used to
configure a device to detect whether an HTTP request
indicates the requestor accepts English as a language. In
some embodiments, an object model and expression syntax
may allow a data stream to be explicitly typecast into any
object class. This may allow a user configuring a device to
specify arbitrary structures to be applied with respect to a
data stream. This may in turn allow a user to leverage
knowledge of a protocol or convention to format input
streams in a manner convenient for processing.

As another example of an explicit typecasting, the expres-
sion HTTP.RES.HEADER(“Location”). TYPECAST _
TO_URL.QUERY may be used to typecase an element of
the HTTP header so that it is treated as a URL. By type-
casting text elements to a URL, the URL processing meth-
ods may be made available to analyze content in any portion
of a network traffic stream.

In some embodiments, two or more object-oriented
expressions may be used in conjunction with an operator,
such as AND, OR, NOT, GREATER THAN, or LESS
THAN, to produce a value. For example, in expression 400¢
two expressions which may return boolean values are joined
with an OR operator. The result of the combined expression
will be the OR of the values returned by the two expressions.
In other embodiments, operators may work with respect to
any objects or data types including, without limitation,
integers, floating point numbers, and strings.

Though the specific examples shown reflect object-ori-
ented statement in the context of an HTTP object model,
object-oriented statements and models may be used to
access any portions or portion of network traffic passing
through a device. In addition, object-oriented statements and
models may be used to access system properties of a device,
or properties of a given connection or connected device.

In one embodiment, an object-oriented expression may be
used to base network device behavior on any properties of
the device. For example, the expression SYS. TIME.WITH-
IN(timel, time2) might be used to base behavior based on a
time of day, or day of year. Or, for example, the expression
SYS.CONNECTIONS.SSL_OPEN.COUNT might be used
to return a count of the total number of SSL connection are
currently open with a system. In both of these examples, the
SYS object represents the system executing the policy, and
a number of methods and/or fields are provided within the
SYS object to access information about system status.

In another embodiment, an object-oriented expression
may be used to base network device behavior on any
properties of a client connected to the device. In one
embodiment a “CLIENT” object might be provided to
represent the properties of a client sending or receiving a
currently processed data stream. For example, the expres-
sion: CLIENT.IPSRC.IN SUBNET(10.100.202.0/24),
might be used to return a true/false value based on whether
a client corresponding to a data stream is in a given subnet.
Or, for example, the expression CLIENT.AGENT.VER-
SION_NUM might be used to retrieve the version number of
a client agent executing on the client. Or, for example, the

20

25

30

40

45

40
expression CLIENT.VLAN.VIRTUAL _IP might be used to
access the virtual IP address of a client.

In still another embodiment, an object-oriented expres-
sion may be used to base network device behavior on any
property of a server connected to the device. For example,
SERVER.METRICS.HTTP.AVG_RESP_TIME might be
used to access the average response time of a server for
generating HTTP requests. Or, for example, SERVER.ICA.
MAX_CONNECTIONS. might be used to identify a maxi-
mum number of ICA connections specified for a given
server. Or, for example, SERVER. ETHER.HEADER might
be used to identify the ethernet packet headers of a given
connection to a server.

In some embodiments, an object-oriented expression may
be used to buffer a certain amount of a communication
before or during processing. For example, an appliance
serving as a proxy for HTTP communications may wish to
base some behavior on an initial part of the response. In this
case, it may be desirable to only buffer a portion of the
response, so that end-to-end response time does not unduly
suffer. In one embodiment, an expression may specify a
number of bytes to receive before an expression is evaluated.
For example, the expression HTTP.REQ.getBody(5000).
TYPECAST _TO_NV_LIST(*=", ‘&’).getValue(*id”) may
be used to buffer the first 5000 bytes of an HTTP request
body, and then treat those bytes as a name-value pair list.
The expression then specifies to get the value corresponding
to the name “id.”

Referring now to FIG. 5, an example of a policy which
may be used in configuring a device is shown. In brief
overview, a policy 500 comprises an expression 510 which
may be evaluated in the context of a rule 505. A policy 500
may also comprise an action 515 which specifies an action
to be taken if the rule is satisfied.

Still referring to FIG. 5, now in greater detail a policy may
be used to configure a device. In some embodiments, a
policy may be used to configure any device including,
without limitation, a WAN optimization appliance 200, an
SSL/VPN appliance 200, an acceleration appliance 200, a
caching appliance 200, a load balancing appliance, and/or a
device providing any combination of features of those
devices. In other embodiments, a policy may be used to
configure a client agent or server agent.

In some embodiments, a policy engine executing on a
device may interpret, evaluate, and/or execute policies with
respect to functions of the device. For example, a policy
engine 236 may execute on an appliance 200 and interpret
and execute a number of policies directing other actions and
modules of the appliance including, without limitation, an
SSL/VPN module 280, an Intranet IP module 282, a switch-
ing module 284, a DNS module 286, an acceleration module
288, an application firewall module 290, and/or a monitoring
agent 197. In some embodiments a single set of policies may
be provided for directing a plurality of appliance functions.
In other embodiments, a separate set of policies may be used
to configure each of a number of appliance functions.
Policies may be stored in any manner within a device. In
some embodiments, a policy may be compiled before it is
executed on a device. In other embodiments, a policy may
be interpreted at runtime.

A policy 500 may comprise one or more expressions 510.
An expression in a policy may be evaluated by a device at
runtime with respect to the objects specified in the expres-
sion to produce a value. An expression 510 may be any type
of expression. In one embodiment, an expression 510 may
be an object-oriented expression. An expression may be
used anywhere within a policy. In some embodiments an

US 9,450,837 B2

41

expression may be specified in a rule of a policy. In other
embodiments, an expression may be specified in an action of
a policy.

A policy 500 may also comprise a rule 505. The rule may
be evaluated at runtime with respect to objects, methods, and
operators identified in the rule to produce a result. Depend-
ing on the result, the appliance may then execute one or
more actions specified in the policy. For example, if a rule
evaluates to “true” an appliance may execute the action
associated with the rule. Or if a rule evaluates to “false” and
appliance may not execute the action associated with the
rule. In some embodiments, a rule may comprise a single
expression. In other embodiments, a rule may comprise a
plurality of expressions connected by operators.

A policy 500 may also comprise an action 515. An action
may specify any action to be taken. Examples of actions may
include, without limitation, blocking or allowing a data
stream, forwarding a data stream or object to a given server
or device, storing an object in memory, altering a portion of
a data stream, altering one or more system properties,
performing an acceleration technique, and performing a
compression technique. In the policy 500 shown, upon
determining that an HTTP request URL contains a user
identifier of “JOE”, the policy dictates an action of forward-
ing the request to a specified server. In some embodiments,
an action may comprise an expression to be evaluated at
runtime

Referring now to FIG. 6, an example of an expression
input screen 600 for a user to input an object-oriented
expression is shown. In brief overview, an expression input
screen 600 comprises a number of pull-down menus 620
which allow a user to specify members of classes to include
in a created expression. The screen 610 may also comprise
a display where a user may be able to see and/or edit a text
version of the expression. The screen may further comprise
a display 630 which displays to the user information corre-
sponding to one or more objects.

Still referring to FIG. 6, now in greater detail, an expres-
sion input screen allows input of object oriented expressions
by a user in any manner. In the embodiment shown, pull-
down menus 620 may be used to select objects. In other
embodiments, any other input elements may be used to
accept an object oriented expression including, without
limitation, text fields, menus, buttons, checkboxes, and
toolbars. In some embodiments, input elements of a screen
600 may provide functionality for a user to create and verity
valid expressions. In some embodiments, the pull-down
menus 620 may be automatically populated with members
of the previous specified class. For example, upon a user
selecting “URL” in the menu shown, the next pull down
menu may be populated with the members of the URL object
class. In this way a user may be able to efficiently navigate
class hierarchies and object models to generate an expres-
sion. In other embodiments, syntax highlighting, auto-
completion, and/or auto-recommendation may be used to
enable a user to easily create and verify expressions. For
example, a user may be provided with a text field 610 to
compose an expression, wherein the text field highlights in
red any unrecognized objects or syntax. Or for example, a
user may be provided with a text field 610 which, upon a
user typing an object class, the text field displays a list of
members of the object class.

In some embodiments, an expression input screen 600
may display to the user information about any objects or
expressions. In some embodiments, the screen 600 may
display the properties and/or recommended uses of a given
class. In one embodiment, the screen 600 may be integrated

10

15

20

25

30

35

40

45

50

55

60

65

42

with or used alongside one or more class documentation
screens such as depicted in FIG. 4B.

Referring now to FIG. 7A, an example of a configuration
interface screen which may be used to configure a plurality
of policies corresponding to one or more network devices is
shown. In brief overview, a screen displays a list of network
device functions 710 with folders containing one or more
policies, policy groups, or settings related to the functions.
In the example shown, the screen displays folders for system
policies, network policies, DNS policies, SSL policies, SSL,
offload policies, compression policies, integrated caching
policies, protection features, load balancing policies, content
switching policies, cache redirection policies, global load
balancing policies, SSL. VPN policies, and application secu-
rity policies. In some embodiments, a number of policies,
policy groups, and/or settings corresponding to a function
may be referred to as a profile.

Still referring to FIG. 7A, now in greater detail, a con-
figuration interface may allow a user to specify policies or
settings related to one or more network devices. In some
embodiments, a configuration interface may be used to
configure an appliance 200 including, without limitation, a
VPN appliance, acceleration appliance, or WAN optimiza-
tion device. In some embodiments, a single configuration
interface may allow a user to configure a plurality of
appliances. For example, a user may be able to specify one
or more appliances to apply a given policy, policy group, or
setting to. In one embodiment, a user may be able to specify
that a number of appliances share a configuration profile. For
example, a user may configure a cluster of appliances 200
such that each appliance has the same policy settings. In
other embodiments, a configuration interface 700 may be
used to configure one or more client agents 120.

A configuration interface 700 may comprise any means of
collecting input including, without limitation, GUIs, and
command-line interfaces. A configuration interface may
comprise one or more expression input screens 600. In one
embodiment, a configuration interface may read configura-
tion information from a file. In another embodiment, a
configuration interface may receive configuration informa-
tion over a network. For example, a configuration interface
700 may comprise means for a user to download one or more
policies, settings, policy groups, or profiles. These may
comprise commonly used policies or settings for a number
of applications.

A configuration interface may obscure any aspects of a
policy, policy group or configuration from a user. For
example, a configuration interface may fill in any portions of
apolicy or policy group automatically or by default such that
the user does not need to actively configure those portions.
For example, a configuration interface may provide a default
list of actions, where the user only needs to specify a list of
rules under which the actions should be taken. The syntax
and implementation of the actions may be completely or
partially hidden from the user.

Referring now to FIG. 7B, an example of using a com-
puter to configure an appliance using a configuration inter-
face is shown. In brief overview, a configuration interface
700 comprising an expression input screen 500 is displayed
on a client 102. The client 102 transmits the configuration
data received via the configuration interface to the appliance
200.

Still referring to FIG. 7B, now in greater detail, a con-
figuration interface 700 may be displayed on a client 102 in
any manner. In some embodiments, a configuration interface
700 may comprise an application executing on the client. In
other embodiments, a configuration interface 700 may com-

US 9,450,837 B2

43

prise a web page displayed by the appliance. In still other
embodiments, a configuration interface 700 may comprise a
web page displayed by a third device.

A configuration interface 700 may comprise any means
for a user to input configuration data including, without
limitation, text fields, menus, buttons, windows, check-
boxes, and drag-and-drop functions. In some embodiments,
a configuration interface 700 may comprise an expression
input screen 500. In other embodiments, a configuration
interface may also provide screens for a user to input one or
more policies. In some embodiments these screen may be
integrated with one or more expression input screens.

A configuration interface may transmit configuration
information to an appliance 200 by any means. The con-
figuration information may be transmitted via any protocol
or protocols. In one embodiment, user-inputted configura-
tion information may be saved to a file on the client 102, and
then the file may be transmitted to the appliance. In other
embodiments, a user may input information into a web page
or a web application which may then transfer the configu-
ration information to the appliance. In some embodiments,
the configuration information may be compiled, formatted,
or otherwise processed before it is transmitted to the appli-
ance 200. In still other embodiments, the configuration
information may be compiled, formatted, or otherwise pro-
cessed after it has been received by the appliance.

Referring now to FIG. 8A, an embodiment of a method of
configuring an object-oriented policy of a network device
with an object-oriented expression to specify structure in a
payload of a packet stream received by a network device is
depicted. In brief overview, a configuration interface 700 is
provided by a device in order to configure a policy 600 for
anetwork device 200 (step 801). The device receives, via the
configuration interface 700, an expression 610 for the policy
600 (step 803). The device receives, via the configuration
interface 700 user information identifying an action to be
taken based on an evaluation of the expression (step 805).

Still referring to FIG. 8A, now in further detail, a con-
figuration interface may be provided for configuring a policy
600 for a network device 200 in any manner (step 801). In
some embodiments the configuration interface 700 may
comprise a command line interface. In other embodiments,
the configuration interface 700 may comprise a graphical
user interface. The configuration interface 700 may com-
prise one or more of a drag-and-drop interface, a list-
selection interface, or a syntax-highlighting interface. In
some embodiments, the configuration interface 700 resides
on a client device 102. In other embodiments, the configu-
ration interface 700 executes on the network device 200. In
some embodiments, a device providing the configuration
interface 700 is connected to an appliance 200 by a network
104. In some embodiments, the configuration interface 700
is a webpage. In some other embodiments, the configuration
interface 700 is a webpage that resides on the network
device 200. In other embodiments, the configuration inter-
face 700 is a webpage that resides on a separate server 106.

A device receives, via the configuration interface 700, an
expression 610 for the policy 600 specifying an object class
to apply to a portion of the payload of a packet stream and
a member of the object class (step 803). In some embodi-
ments, the expression may be received via an expression
input screen 500. In one embodiment, the expression 610
identifies a portion of text within a packet stream. In certain
embodiments, the expression 610 specifies a protocol, and
may also specify one or more methods and fields related to
the protocol. For example, the expression may specify a
protocol of HTTP, HTML, FTP, SMTP, ICA, and/or SSL.

10

15

20

25

30

35

40

45

50

55

60

65

44

The specified protocol may then be applied to parse a data
stream according to the protocol.

The received expression may specify any object class. For
example, the received expression may specify any of the
object classes described in the object model of FIG. 4A. An
object class may be specified in any manner. In one embodi-
ment, specifying an object class may comprise specifying an
instance of the object class. For example, the expression
“HTTP.REQ” may specify an instance of the “http_request”
object from FIG. 4A. In some embodiments, the received
expression may comprise an object-oriented expression.

The received expression may also specify any member of
an identified object class. The member may comprise any
object, data type, or method. In some embodiments, the
member comprises a field. In other embodiments, the mem-
ber may comprise a field corresponding to a second object
class. In some embodiments, the member of the object class
comprises a method. In some embodiments, the member of
the object class is inherited from a parent class of the object
class. The member of the object class may correspond to an
HTTP request or response. In other cases, a member of the
class may be a uniform resource locator (“URL”) or a
cookie.

In other embodiments, the expression 610 comprises an
explicit typecasting. The explicit typecasting may be used to
specify an object class to use with respect to a field or
returned object. For example, a field containing a number
may be explicitly typecast to an alphanumeric string in order
to execute a string comparison. Or for example, a stream of
bytes may be typecast to a list with a given delimiter. Or for
example, a data stream may be typecast as corresponding a
particular protocol or protocol object.

A device may receive, via the configuration interface 700,
information that identifies an action 615 for the policy 600,
the action 615 to be taken based on an evaluation of the
expression 610 (step 805). In some embodiments, the action
615 may comprise an object-oriented expression. In certain
embodiments, the method performs the action 615 in order
to provide load-balancing, content switching, application
security, application delivery, network acceleration, or appli-
cation acceleration. For example, in order to accelerate
network activity, the method may evaluate an expression
610 to determine the location of the user and, based on the
user’s location, route the user’s traffic to the geographically
closest server or servers 106. In some embodiments, a policy
may perform security, acceleration, load-balancing or con-
tent switching functions by rewriting a URL in either the
HTTP request or response. For example, an action 615 may
specify to modify the HTTP request so that the URL refers
to a specific server or server farm 106. In some cases, the
action 615 received from the configuration interface 700
may be an expression for “no action” or for a default action.

Referring now to FIG. 8B, an embodiment of a method of
applying, by a device, object-oriented expressions 610 in a
policy 600 to specify a structure in a payload of a packet
stream received by an appliance 200 is depicted. In brief
overview, an appliance 200 identifies a policy 600 compris-
ing an object-oriented expression 610 to evaluate with
respect to a payload of a received packet stream (step 821).
The appliance 200 assigns values to a data structure speci-
fied by the object-oriented expression 610 based on a portion
of the payload (step 823). The appliance 200 performs an
evaluation of the expression 610 based on the assigned
values (step 825) and takes, in response to the evaluation, an
action 615 specified by the policy 600 (step 827).

Still referring to FIG. 8B, now in further detail, an
appliance may identify a policy to apply to a data stream any

US 9,450,837 B2

45

manner (step 821). In some embodiments, an appliance may
read a policy from one or more configuration files. In other
embodiments, a policy engine 236 in an appliance may store
a number of policies in memory. In still other embodiments,
an appliance may identify a policy in response to a type or
protocol of the data stream. For example, an appliance may
have a set of policies applied to all incoming TCP streams.
Or for example, an appliance may identify one or more
policies that are applied to SSL streams. In one embodiment,
an appliance may identify a policy based on a sender or a
recipient of a data stream. For example, a VPN appliance
may have a set of policies which are applied to incoming
connection requests from clients. Or an acceleration device
may identify one or more polices to apply to a HT'TP stream
from a server 106. In some embodiments, the policy may
comprise a policy received via a configuration interface 700.

The packet stream may be received in any manner, and
from any source. In some embodiments, the packet stream
may be transparently intercepted by the appliance. In other
embodiments, the appliance may receive the packet stream
in the process of proxying one or more transport layer
connections. The packet stream may comprise any type of
packets including, without limitation, IP packets, TCP pack-
ets, UDP packets, and ICMP packets. The packet stream may
comprise any other protocol or protocols.

The identified policy may comprise an object-oriented
expression to evaluate with respect to the payload of a
packet stream. The object-oriented expression may comprise
any type of object-oriented expression, and may specify one
or more object classes, fields, and methods. In some embodi-
ments, the object-oriented expression may comprise part of
a rule. In some embodiments, the expression may specify
one or more objects corresponding to a client, server, HTTP
protocol, or the appliance.

The object-oriented expression may be evaluated with
respect to any payload of a packet stream. In one embodi-
ment, the expression may be evaluated with respect to the
payload of a TCP or UDP stream. In another embodiment,
the expression may be evaluated with respect to an SSL
stream. In still another embodiment, the expression may be
evaluated with respect to the payload of an ICA stream. The
packet stream may be received from any source including,
without limitation, a client, server, client agent, server agent,
or a second appliance.

The appliance assigns values to a data structure as speci-
fied by the object-oriented expression 610 (step 823). A data
structure may comprise the physical representation of an
object instance. In some embodiments, the appliance may
parse some or all of the received payload to assign the
values. In other embodiments, the appliance may perform
any methods specified by the expression or included in an
object model to assign values. For example, with respect to
the expression:

“HTTP.REQ.HEADER(*Accept-Language”). TYPE-
CAST_TO_LIST(*,”)”
the appliance may assign values to an object corresponding
each of the request, header, and comma-delimited list speci-
fied. In some embodiments, the assigning of values may
comprise determining a portion or portions of the data
stream corresponding to an object. In some embodiments,
the step 823 includes applying, by the appliance 200, a class
specified by the object-oriented expression 610 to a byte
stream of the payload. For example, if an expression speci-
fies a URL class, the appliance may assign a value to an
underlying URL data structure by determining the starting
and ending points of a URL within the received payload.
These starting and ending points may then be stored in a

20

25

30

40

45

55

46

URL data structure and used to perform any of the methods
in the URL class. In some embodiments, the appliance may
assign values to a plurality of data structures specified by the
object-oriented expression. In one embodiment, a policy
engine 236 may perform any functions related to the evalu-
ation of a policy.

The appliance may perform an evaluation of the expres-
sion 610 based on the assigned values in any manner (step
825). In some embodiments, the appliance may use one or
more methods of an object class specified by the expression
to perform the evaluation. In some embodiments, the evalu-
ation may produce a boolean value. In other embodiments,
the evaluation may produce an integer, string, or other
object. The appliance may use the assigned values in any
manner. In the URL example above, the appliance, after
determining a starting and ending point for the URL, may
then use those values to perform any operations with respect
to the URL. In some embodiments, the appliance may then
perform the getSuffix()method referenced in FIG. 4A,
which identifies a file type suffix of the requested URL. This
method may also comprise determining a starting and end-
ing point of the suffix in relation to the starting and ending
point of the URL. The appliance may then use the starting
and ending points of the suffix to perform any evaluations of
the file suffix, such as comparing it to the string “jsp” to
determine if the requested URL corresponds to a Java Server
Page.

In some embodiments, the appliance may evaluate a rule
comprising the expression. In other embodiments, the appli-
ance may evaluate a rule comprising a plurality of expres-
sions.

The appliance may then, in response to the evaluation,
take an action 615 specified by the policy 600 (step 827). In
one embodiment, the appliance takes an action if the result
of the evaluation is a value corresponding to true. In another
embodiment, the appliance may take an action if the result
of the evaluation is non-zero. The action taken may be any
action including, without limitation, any action relating to
load-balancing, content switching, application security,
application delivery, network acceleration, or application
acceleration. In some embodiments, the action 615 may
comprise a “no action.”

In some embodiments, the appliance may perform the
action immediately following the evaluation. In other
embodiments, the appliance may perform the action subse-
quent to evaluating at least one other policy. In still other
embodiments, the appliance may perform the action after
waiting a predetermined amount of time or waiting until a
resource becomes available. In one embodiment, the appli-
ance may perform the action after receiving additional
portions of the packet stream.

In some embodiments, the appliance may then forward
the received packet stream to one or more appliances
servers, clients, or client agents. The appliance may perform
any other network appliance functions with respect to the
packet stream including, without limitation, acceleration,
compression, and load balancing.

Now referring to FIG. 8C, a method, in an appliance 200,
for applying object-oriented expressions 610 in a policy 600
to specify structure in a payload of a packet stream received
by the appliance 200 is shown. In brief overview, the
appliance identifies a policy 600 including an object-ori-
ented expression 610 to evaluate with respect to a payload
of a received packet stream (step 841). The appliance
assigns values to a data structure specified by the object-
oriented expression 610 based on a portion of the payload
(step 843). The appliance also performs an evaluation of the

US 9,450,837 B2

47

expression 610 based on the assigned values (step 845). In
response to the evaluation, the appliance alters a portion of
the received packet stream (step 847) and transmits the
altered packet stream (step 849).

Still referring to FIG. 8C, now in greater detail, the
appliance may identify a policy 600 that specifies an object-
oriented expression 610 to evaluate with respect to a payload
of a received packet stream (step 821). This step may be
performed in any manner described herein.

The appliance may assign values to a data structure
specified by the object-oriented expression 610 based on a
portion of the payload in any manner (step 823). This step
may be performed in any manner described herein.

The appliance performs an evaluation of the expression
based on the assigned values (step 845). This step may be
performed in any manner described herein.

In response to the evaluation, the appliance may alter a
portion of the received packet stream (step 847). In some
embodiments, altering a portion of the received packet
stream may comprise taking an action in response to the
evaluation (step 827). In some embodiments, the portion of
the packet stream that is altered is specified by a data
structure identified by the object-oriented expression. In
other embodiments, the portion of the packet stream that is
altered is specified by a second object-oriented expression.
In some embodiments, the portion of the packet stream to be
altered may be specified by an object-oriented expression in
an action of the policy. In some embodiments, the appliance
may rewrite a URL in the body of an HTTP response or
request. In other embodiments, the appliance may rewrite a
form field value in the packet stream. The form field that is
altered may be a field in an HTTP request, an HTTP
response or any other field in an object that is part of the
packet stream. In still another embodiment, the appliance
may alter one or more name-value pairs contained in the
packet stream. In some embodiments, the appliance may
rewrite a portion of the received packet stream to obscure or
remove confidential data including, without limitation, per-
sonal identification numbers, checking account routing num-
bers, personal contact information, social security numbers,
passwords and other confidential information.

To give a detailed example, upon receiving an HTTP
stream from a client destined to a server, an appliance
providing application security functions for the server may
determine to apply a policy:

if (HTTP.Request.getCookie()getValue(*“username™)
Jlength>20) then

HTTP.Request.getCookie()setValue(“username”, “void”)
In this example the appliance may parse some or all of the
HTTP stream to identify the portion of the stream containing
the request, and then the cookie within the request. The
appliance may do this in any manner, including maintaining
one or more internal data structures with references pointers
pointing to the areas of the stream corresponding to the
request and cookie. The appliance may then identify the
value of a “username” name-value pair within the cookie
and determine the whether the length of the value is greater
than 20 characters. A length of over 20 characters may
indicate an application error or a malicious attack, such as an
attempted buffer overflow attack. Upon determining the
length is greater than 20 characters, the appliance may then
alter the value to “void” or any other signal which may
notify the server receiving the stream that an inappropriate
value was sent by the client. The appliance may use and/or
modify any internal data structures in order to alter the
stream. The appliance may then forward the altered stream
to the server. In other embodiments, the appliance may

10

15

20

25

30

35

40

45

50

55

60

65

48

simply block the stream from reaching the server upon
detecting the potential overflow. In these embodiments, the
appliance may return an error message to the client.

In another embodiment, the appliance may replace an
entire HTTP response with a new response. For example, if
the appliance determines that a response contains confiden-
tial data in a form, the appliance may replace the response
with a response indicating an error or with a response
comprising neutral content. In yet another embodiment, an
appliance may replace or rewrite an entire HTTP request or
response header.

The appliance may then transmit the altered packet stream
in any manner (step 849). In some embodiments, the appli-
ance may forward the altered packet stream to a server or
client designated as the recipient of the stream. In other
embodiments, the appliance may redirect the stream to an
appliance, server or client other than the intended recipient
of'the stream. The appliance may transmit the altered packet
stream using any protocol or protocols including, without
limitation, TCP, 1P, UDP, SSL, and ICA.

E. Systems and Methods for Handling Undefined Policy
Expressions

Referring now to FIG. 9, an embodiment of a method, in
an appliance 200, for applying a policy 600 specifying an
action 615 to be taken in the event an element of the policy
600 is undefined is shown. In brief overview, an appliance
identifies a policy 600 to evaluate with respect to a payload
of a received packet stream, where the policy 600 specifies
(1) an expression 610, (ii) a first action 615 to take based on
the expression 610 and (iii) a second action 610 to take if an
element is undefined (step 901). The appliance determines
that an element of the policy 600 is undefined with respect
to the payload (step 903). In response to its determination
that an element is undefined, the appliance takes the second
action (step 905). Broadly speaking, the method allows a
policy to specify an action to be taken if an error or
exception is encountered when the appliance attempts to
evaluate the policy. In this manner, the second action may be
a fallback or error-handling method.

Still referring to FIG. 9, now in greater detail, an appli-
ance identifies a policy 600 to evaluate with respect to a
payload of a received packet stream, where the policy 600
specifies an expression 610, a first action 615 to take based
on the expression 610 and a second action 610 to take if an
element of the policy is undefined (step 901). The appliance
may identify the policy in any manner. In one embodiment,
the expression may be an object-oriented expression. In
another embodiment, the expression 610 may identify an
object class to apply to a portion of the payload of a packet
stream and a member of the object class. In another embodi-
ment, the expression 610 specifies a protocol, and may also
specify one or more related methods and fields. The expres-
sion may identify any type of object and/or object class. In
some embodiments, the expression may comprise one or
more methods of an object class.

The packet stream may be received in any manner and
from any source. In some embodiments, the packet stream
may be transparently intercepted by the appliance. In other
embodiments, the appliance may receive the packet stream
in the process of proxying one or more transport layer
connections. The packet stream may comprise any type of
packets including, without limitation, IP packets, TCP pack-
ets, UDP packets, and ICMP packets. The packet stream may
comprise any other protocol or protocols.

The first action specified by the policy may comprise any
action. In some embodiments, the first action may comprise
an action to be performed if the expression or a rule

US 9,450,837 B2

49

containing the expression evaluates to true. In some embodi-
ments, the action 615 may relate to load-balancing, content
switching, application security, application delivery, net-
work acceleration, or application acceleration. In other
embodiments, either action 615 may comprise to a “no
action” or a default action.

The second action specifies an action to be taken if an
element of the policy is undefined. An element of the policy
may comprise any portion of the policy including, without
limitation, one or more expressions, rules, or operators. An
element may be undefined in any circumstance where an
appliance cannot successfully assign a value to the element.
In one embodiment, an element may be undefined if the
element results in a comparison of incompatible types such
as, for example, determining whether an integer is greater
than a list, or a boolean value is equal to a string. In other
embodiments, an element may be undefined if the element
results in one or more null values. For example, if an
expression attempts to access a “username” value within a
URL object and the expression is applied to a data stream
with a URL with no username value specified, an operation
with respect to the username may be undefined. In other
embodiments, an element may be undefined as a result of
one or more improper typecasts.

In some embodiments, the second action may have been
specified by a user via a configuration interface. For
example, upon entering or viewing a policy in the configu-
ration interface, a user may be prompted to enter an action
to be taken if the policy is undefined at runtime. In other
embodiments, the second action may comprise a preconfig-
ured default second action. For example, a group of policies
may have a default action to take in the event of an undefined
element. For example, a group of policies enabling URL
rewriting may have a default second action of not rewriting
any URLs. Or a group of policies for performing load
balancing may have a default second action of forwarding
the packet stream to a designated backup server.

The appliance 200 may determine if an element of the
policy 600 is undefined with respect to the payload in any
manner (step 903). In some embodiments, the appliance may
determine that the policy is undefined in the process of
evaluating the policy. In other embodiments, the appliance
may determine that the policy is undefined in the process of
precompiling, compiling or interpreting the policy. In some
embodiments, the appliance may determine the policy is
undefined by detecting one or more exceptions generated
during the evaluation of the policy. For example, the appli-
ance may detect a null pointer, overflow, or arithmetic
processing exception during the evaluation of the policy.

In response to the determination that an element is unde-
fined, the appliance may take the second action (step 905).
The second action may comprise any action described
herein. In some embodiments, the second action may com-
prise terminating the receipt and or transmission of the
packet stream. In other embodiments, the second action may
comprise no action.

F. Systems and Methods for Configuring and Using Policy
Groups

Referring now to FIG. 10A, an example of a policy bank
is shown. In brief overview, a policy bank 1000a comprises
a group of one or more policies with a specified order for
evaluation. In the example shown, the order is specified by
line numbers for each of the policies. Each policy may also
have a flow instruction 1010a, 10105, 1010¢, 10104 (gen-
erally 1010) indicating a policy to be evaluated after evalu-
ation of the current policy.

10

15

20

25

30

35

40

45

50

55

60

65

50

Still referring to FIG. 10A, now in greater detail, a policy
bank 1000 may comprise any number of policies including,
without limitation, 1, 2, 3, 4, 5, 6, 10, 20, 50, and 100
policies. The policies of a policy bank may comprise any
policies described herein. In some embodiments, a policy
bank may comprise a group of policies performing a com-
mon function. For example, a policy bank may comprise a
group of policies providing load balancing functions. Or for
example, a policy bank may comprise a group of all the
policies for providing caching.

A policy bank may be configured in any manner. In some
embodiments, a configuration interface 700 may be pro-
vided which allows a user to create and group one or more
polices. In some embodiments, a configuration interface
may be provided which allows a user to name a given policy
bank. In other embodiments, a configuration interface may
be provided which allows a user to specify one or more
attributes of a policy bank. For example, a policy bank may
have a default action to perform in the event of an exception
or undefined policy. Or, for example, a policy bank may
have a set of circumstances in which the policy bank is
applied. For example, a user may specify that a policy bank
is to be used with respect to all incoming HTTP traffic. Or,
for example, a user may specify a policy bank to be used
upon receiving any connection requests from new devices.
In other embodiments, a policy bank may comprise a set of
attributes which are used to enforce certain characteristics in
the policies of the policy bank. For example, a policy bank
may require that no policies in the policy bank access a
certain object. The attributes of a policy bank may be
enforced at configuration time or at runtime.

A policy bank may be stored in any manner. In some
embodiments, a policy bank may be stored on a file in an
appliance. In other embodiments, a policy bank may be
stored in a policy engine 236 of an appliance.

A policy bank may comprise any means of ordering
policies for evaluation. In one embodiment, a policy bank
may comprise an ordered list of policies. In other embodi-
ments, a policy bank may comprise a set of policies with one
or more flow instructions 1010 indicating an evaluation
order. In still other embodiments, a policy bank may com-
prise a numbered list of policies to be executed in order of
increasing numbers.

Each expression in a policy bank may specify a flow
instruction 1010. A flow instruction 1010 may comprise any
information or expression indicating a policy to be executed
in the event the policy containing the flow instruction
evaluates to true. In one embodiment, a flow instruction may
comprise a “NEXT” statement 1010a, which indicates that
the next policy in the bank should be evaluated. In another
embodiment, a flow instruction may comprise a “GOTO”
statement 10105 which identifies another policy in the
policy bank to be evaluated next. In some embodiments, a
GOTO statement may identify a policy by a line number. In
other embodiments, a GOTO statement may identify a
policy by a policy name or other identifier. In still another
embodiment, a flow instruction may comprise an “END”
statement, which indicates that no more policies of the
policy bank should be evaluated.

In some embodiments, a flow instruction 10104 may
comprise an expression or expression to be evaluated to
determine the policy to be executed next. A flow instruction
may comprise any expression including, without limitation,
any object-oriented expression. For example, the flow
instruction 10104 specifies that an integer following a “serv-
num” portion of a query should be added to 17 to determine
the line of the policy to be executed next. In the example

US 9,450,837 B2

51

policy bank, the flow instruction 10104 may be used to
distribute HTTP requests among a number of servers based
on a parameter in the requests.

In some embodiments, a configuration interface 700 may
be provided with means for a user to order policies within a
policy bank. The configuration interface may allow a user to
specify line numbers, priorities, list ordering, or any other
means of specifying evaluation order. In some embodiments,
a configuration interface 700 may allow a user to specify one
or more flow instructions with respect to a policy or a policy
bank. In other embodiments, the configuration interface may
also provide any input means for entering one or more flow
instructions corresponding to policies in the policy bank.

Referring now to FIG. 10B, an embodiment of a method
of flow control among policies 600 used in a network device
200 processing a packet stream is shown. In brief overview,
the method includes identifying, by an appliance 200, a
plurality of policies 600 to apply to a received packet stream,
where at least one of the policies 600 includes a policy
identifier (step 1001). The appliance processes a first policy
600 of a plurality of policies 600, the first policy 600
identifying (i) a rule 605 that includes a first expression 610
(ii) a first action 615 to be taken based on an evaluation of
the rule 605, and (iii) a second policy 600 from among
multiple policies (step 1003). Based on an evaluation of the
expression 610, the appliance determines that the rule 605
evaluates to true (step 1005). In response to the determina-
tion, the appliance 200 processes the identified second
policy 600 (step 1007).

Still referring to FIG. 10B, now in further detail, the
appliance identifies a plurality of policies 600 to apply to a
received packet stream where at least one of the plurality
policies specifies a policy identifier (step 1001). The appli-
ance may identify the plurality of policies in any manner. In
some embodiments, the appliance may identify that the
plurality of policies corresponds to policies for a given data
stream, data stream source, or data stream recipient. In one
embodiment, the plurality of policies may comprise a policy
bank.

The packet stream may be received in any manner and
from any source. In some embodiments, the packet stream
may be transparently intercepted by the appliance. In other
embodiments, the appliance may receive the packet stream
in the process of proxying one or more transport layer
connections. The packet stream may comprise any type of
packets including, without limitation, IP packets, TCP pack-
ets, UDP packets, and ICMP packets. The packet stream may
comprise any other protocol or protocols.

The at least one policy identifier may comprise any means
of identifying a policy, including, without limitation, a line
number, policy name, or priority number. In some embodi-
ments, each policy 600 of the multiple policies 600 specifies
a ranking indicating a default order in which the policies 600
should be processed.

The appliance 200 processes a first policy 600 of the
plurality of policies 600 in which the first policy 600
identifies a rule 605 that specifies a first expression 610, a
first action 615 to be taken based on the evaluation of the
rule 605, and an expression 610 identifying a second policy
600 of the plurality of policies 600 (step 1003). The first
policy may be processed in accordance with any method for
evaluating and processing a policy. In some embodiments,
the first policy may comprise an object-oriented expression.
In other embodiments, the first policy may comprise a rule
comprising an object-oriented expression.

The first policy may contain any expression identifying a
second policy. In some embodiments, the first policy may

10

15

20

25

30

35

40

45

50

55

60

65

52

comprise a name of a second policy. In other embodiments,
the first policy 600 includes an integer that specifies the
ranking of a second policy 600 to be processed next if the
first action 615 applies.

In some embodiments, the first policy may comprise a
flow instruction 1010. The first policy may comprise any
flow instruction, including “next,” “goto,” or “end.” The first
policy may comprise any other elements including, without
limitation, an action to be performed if an element of the first
policy is undefined. In one embodiment, each policy of the
plurality of policies may comprise a flow instruction.

Based on the evaluation of the expression 610 by the
appliance 200, the appliance determines the rule 605 evalu-
ates to true (step 1005). In some embodiments, this step
includes evaluating an object-oriented expression 610.

In response to the determination that the rule evaluates to
true, the appliance 200 may process the identified second
policy 600 (step 1007). In one embodiment, step 1007 may
comprise executing a flow instruction specified by the first
policy. In some embodiments, the appliance 200 may evalu-
ate an expression 610 to determine a ranking of a second
policy 600 from among the multiple policies 600 to be
processed next. In some other embodiments, the appliance
200 may evaluate an object-oriented expression 610 to
determine a ranking of a second policy 600 among the
multiple policies 600 to be processed next. For example, the
appliance may evaluate an expression to determine a line
number to be used in conjunction with a GOTO flow
instruction. After determining the line number, the appliance
may then process the policy at the given line number.

In some embodiments, the appliance may also take the
action specified by the first policy upon determining the rule
is true. In other embodiments, upon determining the rule is
true, the appliance may store the action specified by the first
policy in a list. This list may be used to store a number of
actions to be taken. In one embodiment, as an appliance
processes a number of policies in a policy bank, the appli-
ance may store a list of actions for each policy that contained
a rule that evaluated to true. After processing the number of
policies, the appliance may then take all of the actions stored
in the list. In another embodiment, as an appliance processes
a plurality of policy banks, the appliance may store a list of
actions for each policy that contained a rule that evaluated
to true. After processing the number of policy banks, the
appliance may then take all of the actions stored in the list.

Referring now to FIG. 11A, a block diagram illustrating
flow control among a plurality of policy groups is shown. In
brief overview, a policy bank 10005 comprises a number of
policies. One of the policies comprises an invocation action
1110 which invokes a second policy bank 1000c. The
invocation action 1110 indicates a policy bank 1000c¢ to be
processed if the rule of the policy containing the action
evaluates to true. After processing the invoked policy bank,
an appliance may then resume processing the first policy
bank 10004. This processing will be further described with
respect to FIG. 11B.

Still referring to FIG. 11A, a configuration interface 700
may be provided which allows a user to specify an order of
execution among policy groups by including one or more
invocation actions 1110. An invocation action may identify
a policy group in any manner including, without limitation,
by name, by memory location, or by any other identifier. In
some embodiments, the policy groups may comprise policy
banks. In still other embodiments, an invocation action 1110
may specify a specific policy within a second policy bank.

In some embodiments, an invocation action 1110 may
include one or more directives indicating how the second

US 9,450,837 B2

53

policy group is to be processed. In one embodiment, an
invocation action 1110 contained in a first policy bank may
specify whether or not processing of the first policy bank
should be resumed after processing the invoked policy bank.
In another embodiment, an invocation action 1110 may
specify whether or not processing of the first policy bank
should be resumed if a hard stop or exception is encountered
in the invoked policy bank. For example, an invocation
action may specify that if an “END” flow instruction is
encountered in the second policy bank, that processing
should resume with the first policy bank. Or an invocation
action may specify that if an exception or “END” flow
instruction is encountered in the second policy bank, that no
more policies of the first policy bank should be processed.

In this manner, a user may configure a number of policy
banks to ensure that certain policies are processed, even
where the results of one or more policy banks are uncertain.
For example, a policy bank providing policies for denying
access to restricted URLs may invoke a policy bank for
providing SQL security upon detecting that a URL indicates
that a request contains SQL queries. The invocation may
specify that regardless of the outcome of the SQL security
policy bank processing, processing should resume at the
URL module after the processing of the SQL policy bank. In
this manner, the user may be assured that all of the restricted
URL enforcement policy bank are executed, which may
ensure that all restricted URLs are blocked.

A user may also use policy bank invocation actions 1110
to ensure that policies are not evaluated in the event a given
policy bank encounters an exception or hard stop. For
example, a policy bank providing content switching policies
may, after determining an application corresponding to a
request, may invoke a policy bank containing application
security policies for the application. The invocation may
indicate that if the application security policy bank encoun-
ters an “END” instruction, no more policies are to be
evaluated in the content switching policy bank. This may be
used in cases where an “END” instruction in the application
security policy bank indicates that a security requirement
has not been met, and thus no more processing of the request
should be done.

In some embodiments, an appliance may be configured
with one or more default execution orders for policy groups.
For example, an appliance might have one or more global
policy groups which are always applied first, followed by
one or more appliance or vServer specific policy groups
which are processed following the global policy groups. In
some embodiments, policy banks may have a default order-
ing responsive to the functions the policy banks perform. For
example, a policy bank of SSL policies may be applied first
to incoming traffic, and then a set of security policies may be
to the decrypted traffic, followed by a bank of content
switching policies.

Referring now to FIG. 11B, an embodiment of a method
of flow control among policy groups used in a network
device 200 processing a packet stream is shown. In brief
overview, an appliance identifies a first policy group to apply
to a received packet stream (step 1101). The appliance
processes a first policy of the first policy group, where the
first policy identifies (i) a rule 605 specifying a first expres-
sion 610, and (ii) information identifying a second policy
group (step 1103). The appliance evaluates the rule 605 (step
1105). In response to the evaluation of the rule 605, the
appliance processes the identified second policy group (step
1107). After processing the second policy group, the appli-
ance processes a second policy 600 of the first policy group
(step 1109).

10

15

20

25

30

35

40

45

50

55

60

65

54

Still referring to FIG. 11B, now in greater detail, an
appliance may identify a first policy group to apply to a
received packet stream in any manner (step 1101). The
packet stream may be received from any source and may
comprise any protocol or protocols.

In some embodiments, the first policy may comprise an
object-oriented expression. In other embodiments, the first
policy may comprise a rule including at least one expression
and/or object-oriented expression. In some embodiments,
the first policy 600 specifies an action 615 to be taken based
on an evaluation of the rule 605.

The information identifying a second policy group may
comprise any form of identifying information. In one
embodiment, the second policy group may comprise a
policy bank, and the identifying information may comprise
a name of the policy bank. In some embodiments, the
information identifying the second policy bank may com-
prise an invocation action 1110.

The appliance may process the first policy 600 in any
manner (step 1103). The appliance may evaluate one or
more object oriented expressions in processing the policy.

The appliance 200 may evaluate the rule 605 in any
manner (step 1105). In some embodiments, the appliance
may evaluate an object-oriented expression 610. In some
embodiments, the appliance may determine a boolean value
corresponding to the rule.

In response to the evaluation of the rule 605, the appliance
processes the identified second policy group (step 1107). In
some embodiments, the appliance may only process the
second policy group if the rule evaluates to true. In other
embodiments, the appliance may only process the second
policy group if the rule evaluates to a non-zero value. The
appliance may process the second group in any manner. In
some embodiments, the appliance may process the second
policy bank beginning with a specific policy identified by an
invocation action 1110.

In some embodiments, after processing the second policy
group, the appliance may process a second policy of the first
policy group. For example, in FIG. 11A, an appliance may
evaluate the policy of line 11 in the policy bank 10004. If the
rule is true, the appliance may take the invocation action
1110, and the appliance may process policy bank 1000c.
After completing the processing of policy bank P3, the
appliance may return to the policy bank 10005 and process
the next instruction, which is line 12. In some embodiments,
the appliance may only resume processing the first policy
bank if the second policy bank results in a soft stop, such as
where the last instruction of a policy bank points a NEXT
instruction, as in line 30 of policy bank 1000c. In other
embodiments, the appliance may resume processing of the
first policy bank even where a hard stop is indicated, such as
line 11 of policy bank 1000c.

In some embodiments, the second policy group may also
contain one or more invocation actions. In these embodi-
ments, policy bank evaluations may be chained in any
manner. In some embodiments, an appliance 200 may pro-
cess a third policy group, where the third policy group is
identified by a policy 600 in the second policy group. In
other embodiments, the first policy bank may have a plu-
rality of invocation actions 1110. In these embodiments, the
appliance may process a third policy group, where the third
policy group is identified by a second policy 600 of the first
policy group. In still other embodiments, the first policy 600
specifies a second policy 600 of the first policy group to be
processed after the second policy group is processed. For
example, a policy comprising an invocation action 1110 may
also comprise a flow instruction which specifies a policy of

US 9,450,837 B2

55

the first policy group to be processed after processing returns
from the second policy group.

G. Systems and Methods for Configuring and Using Appli-
cation Security Profiles

Referring now to FIG. 12, a number of configuration
screens 1200, 1210, 1260, 1240 for configuring an applica-
tion security profile are shown. In brief overview, a profile
creation screen 1200 allows a user to input a name and
general properties for a new application security profile. A
profile configuration screen 1210 allows a user to select one
or more checks contained within a profile. Two check
configuration screens 1240, 1260 may then allow a user to
modify settings of an individual check.

Still referring to FIG. 12, now in greater detail, a creation
screen 1200 allows a user to input a profile name and
additional information relating to the profile. A profile may
be named in any manner. In some embodiments, a profile
name may reflect the function or functions of the profile.
Any additional information may be specified along with the
profile. In one embodiment, the profile may specify infor-
mation about the type of network traffic the profile applies
to. For example, the profile may apply to HT'TP or HTML
traffic. Or the profile may apply to webservices traffic.

A profile configuration screen 1210 may allow a user to
specify one or more checks to use with the profile. A check
may comprise any set of policies or actions related to a
common security function. For example, a cookie check
may comprise a set of policies, settings or actions to prevent
cookie tampering. Or a credit card check may comprise a set
of policies, settings, or actions to prevent against confiden-
tial credit card information being transmitted via a device. In
the embodiment shown, a user is given a choice to block,
alert or log with respect to a given check. If “block” is
selected, the profile may block all traffic which does not
satisfy the check. If “alert” is selected, an administrator or
user may receive an alert if a packet stream does not satisfy
the check. If “log™ is selected, a log entry may be created
each time a packet stream is transmitted through a device
that does not comply with the check. The profile configu-
ration screen may provide the option to modify any of these
checks and rules. In some embodiment, any modifications to
a check may be translated into an underlying policy expres-
sion used to configure a network device.

A check configuration screen 1240, 1260 may comprise
any input means for modifying a check. In one embodiment,
a user may be able to specify one or more policies to be
included in a check. In another embodiment, a user may be
able to modify one or more settings of the check. A setting
of'a check may comprise any information used by the check
in determining whether a traffic stream satisfies the check.
For example, with respect to a check that validates starting
URLs, a setting may comprise one or more allowed starting
URLs. Or for example, for a form field format check, a
setting may comprise one or more addresses for which the
format check should be applied. In some embodiments a
setting may correspond to one or more elements of an
underlying policy. For example, an allowed starting URL
may be incorporated as an expression in the rule of a policy
having an action that allows the traffic to pass.

Referring now to FIG. 13A, a flow diagram of a method
for configuring one or more application security profiles for
a device, where each application security profile specifies a
number of checks to perform security functions related to an
application is shown. In brief overview, the method com-
prises providing a configuration interface for configuring an
application security profile (step 1301). The method com-
prises receives a first setting, via the configuration interface,

10

15

20

25

30

35

40

45

50

55

60

65

56

which corresponds to a first check of the application security
profile (step 1303). The method also comprises receiving,
via the configuration interface, a second setting, which
corresponds to a second check of the application security
profile (step 1305). The method also comprises identifying
a policy 600 that specifies a rule 605 that includes a first
expression 600 (step 1307). The method may then comprise
receiving information identifying an application security
profile to be processed based on an evaluation of the rule 605
(step 1309).

Still referring to FIG. 13A, now in further detail, a
configuration interface is provided for configuring an appli-
cation security profile (step 1301). The configuration inter-
face may comprise any configuration interfaces, compo-
nents, and methods described herein. In some embodiments,
the configuration interface comprises one or more of a
drag-and-drop interface, a list-selection interface, or a syn-
tax-highlighting interface. In other embodiments, the con-
figuration interface may comprise an expression configura-
tion screen 600. In still other embodiments, the
configuration interface may comprise any number of profile
creation screens 1300, check configuration screens 1310,
and/or setting configuration screens 1340, 1360. In still other
embodiments, the configuration interface 700 is a command
line interface. The configuration interface may execute on
any device. In some embodiments, the method includes
executing the configuration interface 700 on a device in
communication with a network device 200. In other embodi-
ments, the method includes executing the configuration
interface 700 on the network device 200. In one embodi-
ment, the method provides a user with a configuration
interface 1300 for creating a plurality of application profiles.

A device may receive, via a configuration interface, a first
setting that specifies a corresponding first check of the
application security profile (step 1303). In some embodi-
ments, the device receives from the configuration interface
700 a URL to be used by the first check. In other embodi-
ments, the device receives from the configuration interface
700 an expression 610 specifying one or more URLs to be
used by the first check. In still other embodiments, the
device receives from the configuration interface 700 an
object-oriented expression 600 specifying one or more
URLSs to be used by the first check. In some embodiments,
the setting may comprise an indication whether the check
should block, log, or generate an alert with respect to a
packet stream that violates the check. In other embodiments,
the setting may comprise an element of one or more policies
included in the check.

The device also receives, via the configuration interface
700, a second setting that specifies a corresponding second
check of the application security profile (step 1305 This
setting may be received in any manner, including any
manner in which the first setting was received.

The device may identify, via the configuration interface
700, a policy 600 that specifies a rule 605 which includes a
first expression 610 (step 1307). In some embodiments, the
policy may comprise an object-oriented expression. The
policy may be identified in any manner. In some embodi-
ments, the policy may be chosen from a list. In other
embodiments, the policy may be chosen via a drag-and-drop
interface. In still other embodiments, the policy may be
automatically chosen with respect to a given profile. In one
embodiment, the policy may be input directly by a user.

The device may receive, via the interface 700, informa-
tion that identifies the application security profile to be
processed based on an evaluation of the rule 605 (step 1309).
In one embodiment, the application security profile may be

US 9,450,837 B2

57

represented as a policy bank, and an invocation action may
be added to the policy identifying the policy bank. In some
embodiments, the method includes storing the application
security profile. In other embodiments, the method includes
transmitting the application security profile to a network
device 200.

In some embodiments, an application security profile may
be specified as an action for more than one policies. For
example, there may be several conditions under which an
application security profile including form field consistency
and buffer overflow checks should be applied. A plurality of
policies, each specifying one of the several conditions, each
may invoke the application security profile as an action.

Referring now to FIG. 13B, an embodiment of a method
for executing one or more application security profiles for a
device, each application security profile specifying a number
of policy groups performing security functions related to an
application is shown. In brief overview, the method includes
an appliance identifying a first policy to apply to a received
packet stream; where the first policy 600 specifies a rule 605
that includes a first expression 610 and identifies an appli-
cation security profile (step 1321). The appliance 200 evalu-
ates the rule 605 (step 1323). The appliance, in response to
the evaluation of the rule 605, processes a first check
specified by the application security profile (step 1325). In
response to the evaluation of the rule 605, the appliance also
processes a second check specified by the application secu-
rity profile (step 1327).

Still referring to FIG. 13B, now in further detail, the
method includes an appliance to identify a first policy to
apply to a received packet stream; where the first policy 600
specifies a rule 605 that includes a first expression 610 and
identifies an application security profile (step 1321). In some
embodiments, the appliance 200 comprises a VPN proxy
device. In some other embodiments, the appliance 200
identifies a first policy 600 to apply to a received TCP packet
stream. The packet stream may be received in any manner
and from any source. The packet stream may comprise any
protocol or protocols.

The appliance 200 evaluates the rule of the policy (step
1323). The appliance may evaluate the rule according any to
technique. In some embodiments, the rule may comprise an
object-oriented expression. In other embodiments, the rule
may comprise a plurality of object oriented expressions. In
some embodiments, the appliance may determine a boolean
value as a result of evaluating the expression.

In response to the evaluation of the rule 605, the appliance
200 processes a first check specified by the application
security profile (step 1325). In some embodiments, the
appliance may process the first check in response to deter-
mining that the rule is true.

The appliance may process the first check in any manner.
In some embodiments, the appliance evaluates at least one
setting of the first check to determine whether to apply the
first check. In some other embodiments, the appliance
determines that a URL contained in the packet stream
matches at least one setting of the first check, and applies the
first check in response to the determination. In still other
embodiments, the appliance may determine that a URL
contained in the packet stream matches an expression 610 of
one setting of the first check, and applying the first check in
response to the determination. In other embodiments, the
appliance may determine that a URL contained in the packet
stream matches an object-oriented expression 610 of one
setting of the first check. The appliance may apply the first
check in response to the determination.

10

15

20

25

30

35

40

45

50

55

60

65

58

Also in response to the evaluation of the rule 605, the
appliance 200 may process a second check specified by the
application security profile (step 1327). In some embodi-
ments, the appliance may process the second check in
response to determining that the rule is true. In some
embodiments, the method uses at least one of the first check
and second check in order to perform one of: SQL injection
detection, invalid starting URL detection, cookie tampering
detection, form field consistency detection, buffer overtlow
detection, cross-site scripting detection, credit card number
detection, and invalid URL detection. In some other embodi-
ments, the method uses at least one of the first check and
second check to perform one of: SQL injection blocking,
invalid starting URL blocking, cookie tampering blocking,
inconsistent form field blocking, buffer overtlow blocking,
cross-site scripting blocking, credit card number blocking,
and invalid URL blocking.

While the invention has been particularly shown and
described with reference to specific preferred embodiments,
it should be understood by those skilled in the art that
various changes in form and detail may be made therein
without departing from the spirit and scope of the invention
as defined by the appended claims.

What is claimed is:

1. A method of processing groups of policies, the method
comprising:

(a) establishing, by a device, a first group of policies and

a second group of policies to apply to packets received
by the device, a policy of the first group of policies
identifying an action to apply the second group of
policies subsequent to processing of the policy of the
first group of policies, wherein the establishing step
comprises receiving, by the device, configuration of the
policy of the first group of policies to have the action
of the policy to apply the second group of policies upon
evaluation to true of an expression of the policy;

(b) applying, by the device, one or more policies of the

first group of policies to a packet in an execution order;

(c) determining, by the device, to apply the second group

of policies to the packet responsive to evaluation of the
policy of the first group of policies identifying the
action to apply the second group of policies, wherein
the determining step further comprises evaluating an
expression of the policy of the first group of policies to
the packet, a result of the evaluation identifying to take
the action of applying the second group of policies; and
(d) applying, by the device, responsive to the determina-
tion and after processing of the policy of the first group
of policies, one or more policies of the second group of
policies to the packet.

2. The method of claim 1, wherein step (a) further
comprises receiving, by the device, configuration of the first
group of policies and the second group of policies.

3. The method of claim 1, wherein step (d) further
comprises changing, by the device responsive to the deter-
mination, a flow of execution of applying the first group of
policies to applying the second group of policies.

4. The method of claim 1, further comprising determining,
by the device, that evaluation of a second policy of the
second group identifies a second action to apply a third
group of policies to the packet.

5. The method of claim 1, further comprising determining,
by the device, that evaluation of a second policy of the
second group identifies a section action to apply a third
policy of the first group of policies to apply to the packet.

6. The method of claim 1, further comprising determining,
by the device, that evaluation of a second policy of the

US 9,450,837 B2

59

second group identifies a second action to halt execution of
applying policies to the packet.

7. The method of claim 1, further comprising executing,
by the device, a plurality of actions collected in a list
resulting from evaluation of policies from the first group and
the second group of policies to the packet.

8. A system of processing groups of policies, the system
comprising:

a device configured to establish a first group of policies
and a second group of policies to apply to packets
received by the device, a policy of the first group of
policies identifying an action to apply the second group
of policies subsequent to processing of the policy of the
first group of policies, wherein the device is further
configured to receive configuration of the policy of the
first group of policies to have the action of the policy
to apply the second group of policies upon evaluation
to true of an expression of the policy;

wherein the device is configured to apply one or more
policies of the first group of policies to a packet in an
execution order; and

wherein the device is configured to determine to apply the
second group of policies to the packet responsive to
evaluation of the policy of the first group of policies
identifying the action to apply the second group of
policies, wherein the device is further configured to
evaluate an expression of the policy of the first group
of policies to the packet, a result of the evaluation
identifying to take the action of applying the second
group of policies; and

20

60

wherein the device is configured to apply, responsive to
the determination and after processing of the policy of
the first group of policies, one or more policies of the
second group of policies to the packet.

9. The system of claim 8, wherein the device is further
configured to receive configuration of the first group of
policies and the second group of policies.

10. The system of claim 8, wherein the device is further
configured to change, responsive to the determination, a
flow of execution of applying the first group of policies to
applying the second group of policies.

11. The system of claim 8, wherein the device is further
configured to determine that evaluation of a second policy of
the second group identifies a second action to apply a third
group of policies to the packet.

12. The system of claim 8, wherein the device is further
configured to determine that evaluation of a second policy of
the second group identifies a section action to apply a third
policy of the first group of policies to apply to the packet.

13. The system of claim 8, wherein the device is further
configured to determine that evaluation of a second policy of
the second group identifies a second action to halt execution
of applying policies to the packet.

14. The system of claim 8, wherein the device is further
configured to execute a plurality of actions collected in a list
resulting from evaluation of policies from the first group and
the second group of policies to the packet.

#* #* #* #* #*

